

GREET Life-Cycle Analysis Model and Key LCA Issues for Vehicle/Fuel Technologies

Michael Wang Systems Assessment Group Energy Systems Division Argonne National Laboratory, USA

The 11th Concawe Symposium February 23-24, 2015, Brussels, Belgium

The GREET[™] (<u>Greenhouse gases, Regulated Emissions, and Energy use</u> in <u>T</u>ransportation) Model

GREET and its publications are available at greet.es.anl.gov

← → C Label{eq: https://greet.es.anl.gov								
Argonne	Transportation Technology R&D Center							
About TTRDC Mission Exp	erts Facilities Tools Publications Awards Media Center Site Index	Search TTRDC Sea						
Argonne Home > Transportation	echnology R & D Center > Modeling_simulation >							
Alternative Fuels	GREET Model							
Autonomie	The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model							
Batteries								
Engines	GREET News							
Green Racing	GREET.net 2014	Oct 3, 2014						
GREET • Fuel-Cycle Model • Copyright Statement • Mini-tool and Results • Vehicle-Cycle Model • Publications • AFLEET Tool • Fleet Footprint Calculator • Travel Carbon Calculator • Travel Carbon Calculator • Workshops • Contact Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric	 The latest major update was developed in order to be more robust and flexible. The major additions to the GREET 2014 version are: Updated processes to allow multiple input and multiple outputs, each allocated output can be used downstream Updated vehicle results to allow multiple functional units Incorporated charting tool Incorporated CCLUB with two new feedstocks (poplar and willow), new organic carbon emission factors for soil depth of 100 cm, and new land-use change results Incorporated marine vessel module Added water consumptions for the major pathways as an additional life-cycle analysis metric Added black carbon and organic carbon emissions as an additional criteria air pollutants (CAP) and GHG species Updated methane emission for natural gas pathways as well as petroleum products Expanded oil sands modeling with more detailed and refined operation data Updated soybean and biodiesel production assumptions Added pretreatment pathways including dilute acid pretreatment and ammonia fiber expansion Added catalyst production pathways Updated enzyme and yeast assumptions Updated global warming potential (GWP) Other updates are in progress and notification will be provided when these updates become available. 	GREET LIFE-CYCLE MODEL						
Vehicles	Download GREET.net from the <u>GREET.net website</u>							

There are more than 23,000 registered GREET users globally

BDEING

- Geographically, 71% in North America, 14% in Europe, 9% in Asia
- 57% in academia and research, 33 % in industries, 8% in governments

GREET outputs include energy use, greenhouse gases, criteria pollutants and water consumption for vehicle and energy systems

Energy use

- Total energy: fossil energy and renewable energy
 - Fossil energy: petroleum, natural gas, and coal (they are estimated separately)
 - Renewable energy: biomass, hydro-power, wind power, and solar energy

Greenhouse gases (GHGs)

- > CO₂, CH₄, N₂O, and black carbon
- CO₂e of the four (with their global warming potentials)

Air pollutants

- VOC, CO, NO_x, PM₁₀, PM_{2.5}, and SO_x
- They are estimated separately for
 - Total (emissions everywhere)
 - Urban (a subset of the total)

Water consumption

GREET LCA functional units

- Per mile driven
- Per unit of energy (million Btu, MJ, gasoline gallon equivalent)
- Other units (such as per ton of biomass)

GREET covers on-road, air, marine, and rail transportation

- Over 100 fuel production pathways are covered
 - Petroleum based
 - Natural gas based
 - Renewable fuels
 - Electricity
 - Hydrogen
- On-road transportation: light and heavy vehicles
 - Internal combustion engines
 - Hybrid electric vehicles
 - Battery electric vehicles
 - Fuel cell vehicles
- Air transportation
 - Globally, a fast growing sector with GHG reduction pressure
 - Interest by ICAO, U.S. FAA, and commercial airlines
 - GREET includes
 - Passenger and freight transportation
 - Various alternative fuels blending with petroleum jet fuels
- Marine transportation
 - Pressure to control air pollution in ports globally
 - Interest by IMO, U.S. EPA, local governments
 - Biodiesel and LNG are potential marine alternative fuels
 - GREET includes
 - Ocean and inland water transportation
 - Baseline diesel and alternative marine fuels
 - Rail transportation
 - Interest by U.S. DOT, railroad companies
 - Potential for CNG/LNG to displace diesel

Approach, data sources, and key issues with GREET LCA

Approach: build LCA modeling capacity with the GREET model

- > Build a consistent LCA platform with reliable, widely accepted methods/protocols
- Address emerging LCA issues
- > Maintain openness and transparency of LCAs by making GREET publicly available

Data Sources

- > Open literature and results from other researchers
- Simulations with models such as ASPEN Plus for fuel production and ANL Autonomie and EPA MOVES for vehicle operations
- Fuel producers and technology developers for fuels and automakers and system components producers for vehicles
- Baseline technologies and energy systems: EIA AEO projections, EPA eGrid for electric systems, etc.
- Consideration of effects of regulations already adopted by agencies

Main technical issues of LCAs

- LCA system boundary scope of LCA
 - Process-based LCA
 - Attributional vs. consequential LCA
- Co-product methods in LCA
- Data availability and representation
 - Temporal variation
 - Geographic variation
 - Sensitivity of LCA parameters and uncertainty analysis

Co-product methods: benefits and issues

Displacement method

- > Data intensive: need detailed understanding of the displaced product sector
- > Dynamic results: subject to change based on economic and market modifications
- Allocation methods: based on mass, energy, or market revenue
 - Easy to use
 - > Frequent updates not required for mature industry, e.g. petroleum refineries
 - Mass based allocation: not applicable for certain cases
 - Energy based allocation: results not entirely accurate, when coproducts are used in non-fuel applications
 - Market revenue based allocation: subject to price variation
 - Process energy use approach
 - GREET method for petroleum refineries
 - > Detailed engineering analysis is needed
 - Upstream burdens still need allocation based on mass, energy, or market revenue

Co-Products and Their Treatment in GREET LCAs

Pathway	Co-Product	Displaced Products	LCA Method in GREET	Alternative LCA Methods Available in GREET
Corn ethanol	DGS	Soybean, corn, and other animal feeds	Displacement	Allocation based on market revenue, mass, or energy
Sugarcane ethanol	Electricity from bagasse	Conventional electricity	Allocation based on energy	Displacement
Cellulosic ethanol (corn stover, switchgrass, and miscanthus)	Electricity from lignin	Conventional electricity	Displacement	Allocation based on energy
Petroleum gasoline	Other petroleum products	Other petroleum products	Allocation at refining process level based on energy	Allocation based on mass, market revenue

LCA system boundary: petroleum to gasoline

Indirect effects and land disturbance of petroleum fuels

- US military operations in the Middle East vs. petroleum geopolitics
 - Multi-purposes of military operations
 - What military operations to be included?
 - How to allocate total emission burdens over different purposes?
 - Marginal crude (Middle East crude) vs. average US crude (domestic vs. total import vs. Middle East import)
 - 8-18 g/MJ over US import of ME oil (Liska and Perrin 2010)
 - 1-2 g/MJ over total US crude use (Liska and Perrin 2010)
- Land disturbance (and reversion) of petroleum recovery
 - Exploration, drilling, and recovery
 - Pipelines (and rail)
 - Large amount of crude can be produced from a unit of land cover (relative to biofuel land footprint)
 - Allocation methods
 - Pay as you go
 - Amortization over lifetime
- Facility construction: US refineries were built 50 years ago; retroactive allocation of historical emissions to current fuel production?

Multiple products from refineries: overall refinery efficiency as well as product-specific efficiencies are determined

Allocation methodology of energy between products at process-unit level to make product pools (H2 pool as example)

U.S. product-specific efficiency reflects the energy intensity of the refining units contributing to each product pool

- Refining unit contributions to each pool vary among U.S. refineries
- Wider efficiency range for diesel compared to other products

FCC coke, NG and fuel gas combustion are the major contributors to refinery products CO₂ intensity

Gasoline greenhouse gas emissions: grams/MJ

Oil sand land disturbance GHG (Yeh et al. 2014)

- Pay-as-you -go
 - ✓ 3.38-3.43 g/MJ for surface mining
 - ✓ 1.78-2.80 g/MJ for in-situ
- Amortization
 - ✓ 1.87-1.90 g/MJ for surface mining
 - ✓ 0.56-0.89 g/MJ for in-situ

	Conventional Crude	Mining SCO (53%)	Mining Dilbit (4%)	In-Situ SCO (8%)	In-Situ Dilbit (35%)
Recovery	4.13	19.6	6.95	24.0	12.7
Land Disturbance	-	1.86	1.47	0.70	0.56
Refining	15.3	18.2	16.9	19.1	18.5
Transport. & Distribution	2.3	3.7	3.9	3.7	3.9
Total WTP	21.7	43.3	29.2	47.5	35.7

LCA system boundary: compressed natural gas

Methane leakage along NG supply chain is a major concern

Sector	CH ₄ Emissions: Percent of Volumetric NG Produced (Gross)												
	EPA - Inventory 5 yr avg (2011)	CMU - Marcellus Shale (2011)	NREL - Barnett Shale (2012)	API/ ANGA Survey (2012)	NOAA - DJ Basin (2012)	NOAA - Uintah Basin (2013)	Exxon Mobil (2013)	EPA - Inventory 2011 data (2013)	Univ. Texas (2013)	EPA - Inventory 2012 data (2014)	Stanford (2014)	IUP - Bakken (2014)	IUP - Eagle Ford (2014)
Gas Field	1.18		0.9	0.75	2.3-7.7	6.2- 11.7	0.6	0.44	0.42	0.33		2.8- 17.4	2.9- 15.3
Completion/ Workover			0.7					0.17	0.03	0.04			
Unloading			0					0.04	0.05	0.05			
Other Sources			0.2					0.23	0.34	0.24			
Processing	0.16		0				0.17	0.16		0.15			
Transmission	0.38		0.4				0.42	0.34		0.35			
Distribution	0.26							0.23		0.21			
Total	1.98	2.2						1.17		1.03	3.6-7.1		

- Studies in GREEN are with bottom-up approach: measuring emissions of individual sources -> aggregating emissions along supply chain
- Studies in **RED** are with top-down approach: measuring CH4 concentration above or near fields/cities -> deriving CH4 emissions -> attributing emissions to NG-related activities

CNG vehicle efficiency and CH_4 leakage are two key factors of WTW GHG emissions of CNGVs vs. GVs

LCA system boundary: switchgrass to ethanol

Choice of co-product methods can have significant LCA effects

Soy Meal

Soy Oil

Soybean

Biofuel production pathways and co-product methods included in this Study.

Biofuel Pathway	Method of Dealing with Multiple Products	Case Number
Corn to ethanol	Displacement Mass Energy content Market value	C-E1 C-E2 C-E3 C-E4
Switchgrass to ethanol	Process purpose Displacement	C-E5 G-E1
	Energy content Market value	G-E2 G-E3
Soybeans to biodiesel	Displacement Mass Energy content Market value	S-BD1 S-BD2 S-BD3 S-BD4
Soybeans to renewable diesel	Displacement Mass Energy content Market value Hybrid allocation	S-RD1 S-RD2 S-RD3 S-RD4 S-RD5

Light Ends

Naphtha

Jet Fuel

Renewable Diesel

Trend of estimated land-use change GHG emissions for corn-based ethanol

LCA GHG emissions of gasoline and bioethanol pathways

Farming

Combustion

T&D

5 g

5 g

3 g

Ethanol Production

1 g

31 g

Farming

Combustion

T&D

LUC

14 g

4 g

Ethanol Production

11 g

4 g

6 g

2 g

11 g

Please visit http://greet.es.anl.gov for:

GREET models

GREET documents

• LCA publications

• GREET-based tools and calculators