Our New MIT Report: On the Road towards 2050

Sloan Automotive Laboratory

1117

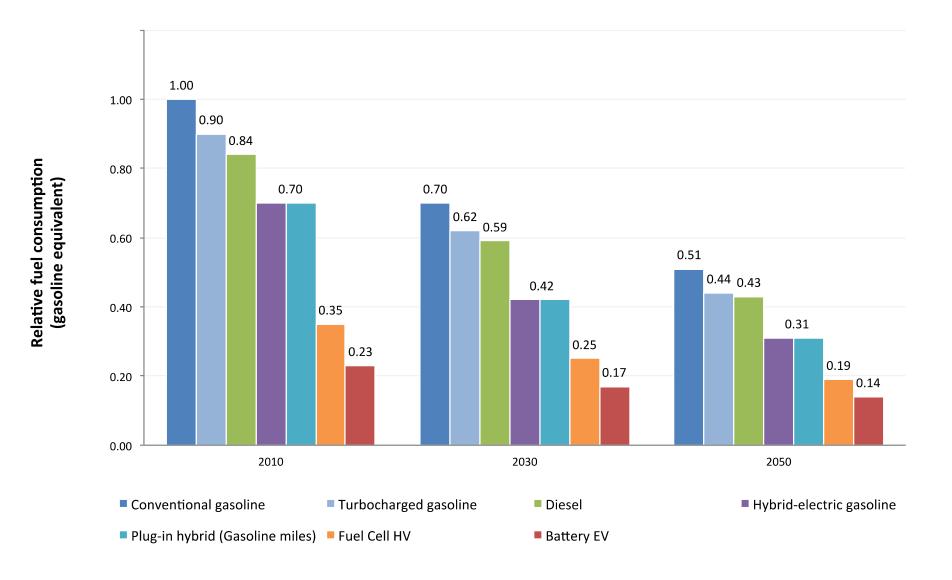
Presentation at 11th Concawe Symposium Brussels, February 24, 2015

Issued a Series of Reports

On the Road towards 2050: Report Status

- New report: "On the Road Towards 2050": Potential for Achieving Substantial Reductions in Light-Duty Vehicle Fuel Use and Greenhouse Gas Emissions.
- 2. Contributors: John Heywood and Don MacKenzie (also editors), Ingrid Bonde Akerlind, Parisa Bastani, Kandarp Bhatt, Alice Chao, Eric Chow, Valerie Karplus, David Keith, Michael Khusid, Eriko Nishimura, Stephen Zoepf.
- 3. M.I.T. Energy Initiative Report, 2015.

Report Status


Ch. 1 Introduction Ch. 2 Overview of Options Ch. 3 Propulsion and Vehicle Technologies Ch. 4 Vehicle Weight and Size Reduction Ch. 5 Fuel Consumption Ch. 6 Fuel and Energy Pathways Forward

Ch. 7 Deploying Improved and New Vehicle Technology Ch. 8 Opportunities in **Traveler and Driver Behavior** Ch. 9 Scenario Analysis and Results Ch. 10 A Comprehensive Policy Approach Ch. 11 Overall Findings and Implications

Three Important Energy and GHG Emissions Paths Forward

- **1. Improve:** increase the fuel efficiency of mainstream transportation vehicles and develop alternative liquid hydrocarbon fuel sources which can displace petroleum and reduce GHG emissions.
- **2. Conserve:** reduce the demand for energy intensive personal and freight transportation services.
- **3. Transform:** explore how to shift transportation's energy requirements (and propulsion technologies) to alternatives with much lower GHG emissions.

Relative Fuel Consumptions (Tank to Wheels):

Well-to-Wheels GHG Emissions Data: Average New U.S. Car in 2030

Vehicle Propulsion	CO ₂ /fuel Energy gCO ₂ e/MJ	gCO ₂ e/km	CO ₂ /km Ratio
System/fuel			
Gasoline NASI	93	213	1.0
Turbo SI Gasoline	93	191	0.9
Diesel	99	194	0.91
HEV	93	133	0.62
PHEV (10) – (30) ^a		103 – 77	0.48 - 0.36
FCEV ^b	200 - 100	150 – 74	0.7 – 0.35
BEV ^c	164 - 88	87 – 47	0.41 - 0.22
Natural gas NASI	74	169	0.79
Corn ethanol NASI	73	167	0.78
Sugar cane/Forest			
waste ethanol	34 – 39	78 – 89	0.37 - 0.42
Tar sands gasoline	105	240	1.13

^aDependent on the % miles electrical and electrical supply system ^bFCEV – Lower number with Clean H₂ (with CCS or "green" electrolysis) ^cDependent on the CO₂ intensity of electricity

Summary of Potential at the Vehicle Level

1.Improving mainstream engine, hybrid, technology and vehicle light-weighting have potential for up to 50 percent reduction in vehicle fuel consumption (gasoline equivalent) by 2050.

2.Greenhouse gas emissions reduction potential, full life-cycle analysis, is somewhat less—about 40 percent.

3.Charge-sustaining HEV vehicles likely to grow as fraction of sales: relative benefit will usefully improve.

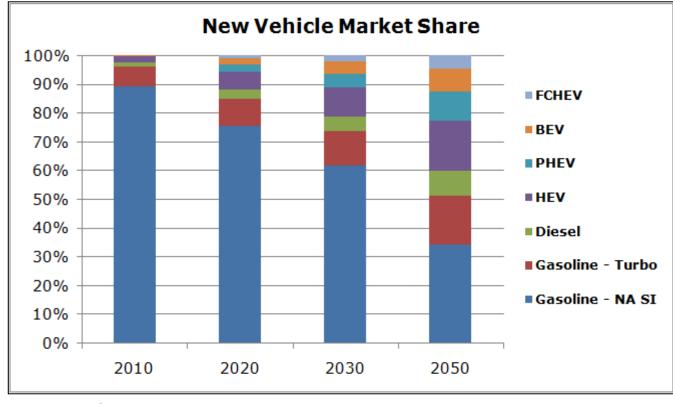
4.Plug-in hybrid technology significantly more promising path to increased electrification than BEVs: battery performance and cost, range and recharging time are major barriers.

5.Fuel cell hybrid technology and hydrogen appear to be lowest cost longer-term propulsion and fuel alternative: low GHG emitting hydrogen supply and distribution major barriers.

6.Biofuels: Useful though likely limited in scale by land impacts.

Develop and Analyze Scenarios of Future Light-Duty Vehicle Developments and their Impacts

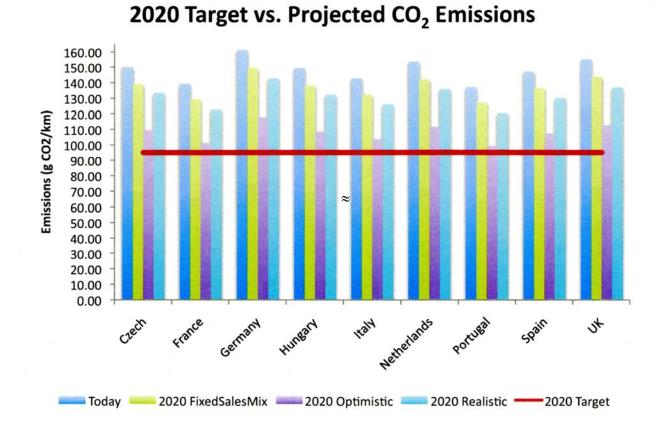
- 1. Average new vehicle level:
 - Different mainstream and alternative propulsion systems and their fuels
 - Quantify their fuel consumption, acceleration performance, size/weight, GHG emissions, cost
 - Estimate improvements in these attributes over time
- 2. In-use vehicle fleet level:
 - Vehicle type and propulsion system sales mix over time
 - Sales volume, annual vehicle mileage/kilometers
- 3. Approaches/methodologies
 - Engineering analysis of engine-in-vehicle options
 - Recent sales data trends and plans
 - Assumptions, comparisons, judgments


Our Recent LDV In-Use Fleet Scenarios

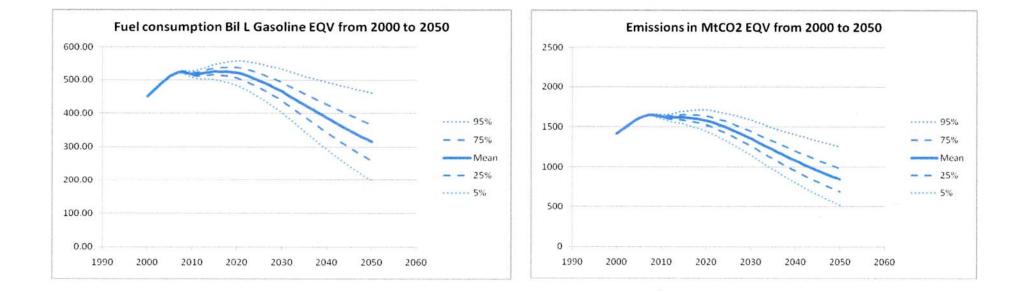
- 1. On the Road in 2035, MIT LFEE Report, U.S. and Europe, 2008. (Anup Bandivadekar et al.).
- "The effect of uncertainty on US transport-related GHG emissions and Fuel Consumption out to 2050," Trans. Res. A, 2012. (Parisa Bastani et al.).
- U.S. CAFE STANDARDS: Potential for Meeting Light-duty Vehicle Fuel Economy Targets, 2016-2025, MITei Report, 2012 (Bastani, Heywood, Hope).
- 4. "Potential of Electric Propulsion Systems to Reduce Petroleum Use and GHG Emissions in the U.S. Light-Duty Vehicle Fleet," MS Thesis, MIT, 2010 (Michael Khusid).

Our Recent LDV In-Use Fleet Scenarios – Continued

- 5. "Potential for Meeting the EU New Passenger Car CO₂ Emissions Targets," MS Thesis, MIT, 2010 (Kandarp Bhatt).
- 6. "Assessing the Fuel Use and GHG Emissions of Future Light-Duty Vehicles in Japan," MS Thesis, MIT, 2011 (Eriko Nishimura).
- 7. "Driving Change: Evaluating Strategies to Control Automotive Energy Demand Growth in China," MS Thesis, MIT, 2013 (Ingrid Bonde Akerlind).
- 8. "Benefits of a Higher Octane Standard Gasoline for the U.S. Light-Duty Vehicle Fleet," SAE paper, 2014-01-1961 "Economic and Environmental Benefits of Higher-Octane Gasoline," Env. Sci. Tech., V. 48, 2014. (Eric Chow, Ray Speth, John Heywood et al.).


Technology Market Deployment Over Time (U.S.)

Sales market share modal inputs to 2050


Source: Bastani, Heywood, Hope (2012)

European Union: Projected Sales Mix CO₂ Emissions, by Country, vs. Target, 2020

Projected CO₂ reduction, 15-25%: Targets require \approx 33%

U.S. LDV Fleet Fuel use and GHG Emissions out to 2050

U.S. in-use fleet fuel consumption (bil liters gasoline equivalent per year) and GHG emissions (Mtonnes CO₂ equivalent per year): mean values and uncertainty

Source: Bastani, Heywood, Hope (2012)

Summary: Where Are We?

- 1. Improving the mainstream internal combustion engine (gasoline and diesel) light-duty vehicle is the most effective way to reduce in-use LDV fleet GHG emissions in the nearer term.
- 2. By reducing the HEV cost premium and increasing its benefits, the HEV sales fraction can continue to increase steadily over time, yielding additional reductions.
- 3. The potential for reducing vehicle weight, and thus reducing fuel consumption, is significant, important to pursue, but has limits.
- 4. The other propulsion system options (alternative fuels, EVs and electricity, fuel cells and hydrogen) need to be explored and developed further, and their feasibility assessed.

Summary: Where Are We? – Continued

- 5. Biomass-based fuels contribution likely limited by source constraints. Miscibility and octane important issues.
- 6. BEVs are inherently limited, so important to expand PHEV sales, from the increasing HEV market, so electricity can provide a growing fraction of transportation's energy.
- 7. The GHG emissions from the electricity supply system must be substantially reduced in parallel.
- 8. Which of these alternative energy sources is the most promising is, as yet, unclear, though fuel cells and hydrogen are moving up.

Summary: Where Are We? – Continued

- 9. Policies will need to be implemented to prompt these changes on both the supply and demand side. e.g.,
 - More stringent GHG requirements beyond 2025
 - Increases in fuel/carbon taxes (for several reasons)
 - Joint efforts between government, auto industry and petroleum/energy industry to implement needed infrastructure changes
 - Actions that reduce the demand for private vehicular travel significantly