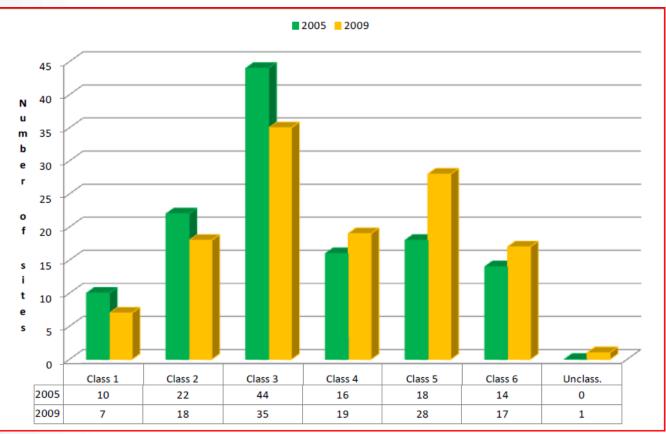


Industry Progress in Reducing Refinery Discharge

9th CONCAWE Symposium

14-15th March 2011


conservation of clean air and water in europe

- CONCAWE regularly reports oil emissions in the effluents. What are we learning from this?
- What are the changes in the refining processes and eventually in the effluents ?
- Did the industry make improvements in the treatments of their effluents ?
- What is the trend of oil emissions at European level ?
- How does it compare to the refinery BREF ranges?
- Why CONCAWE has a major role to play in BREF discussions?

Reproduction permitted with due acknowledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

Refinery complexity increases (constantly since 1969)

More cracking, desulfurisation capacity ... → more COD, more phenols,... and also more water use (i.e. Process water, Cooling water...)

Reproduction permitted with due acknowledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

-	Table 3	Table 3 Wastewater treatment systems in oil refineries – pre-2005 data														
ſ		Number		Refineries equipped with:												
		of	Gra	vity	Gp	olus	GA plus		GAB pl	us final	G or GA plus					
	Yearof	refineries	sepa	ration	advanced treatment only (GA)		biological treatment (GAB)		polishing		offsite biological					
	survey	reporting	only	′ (G)												
		these									treatment					
-		data	No.	%	No.	%	No.	%	No.	%	No.	%				
	1969	82	51	62	12	15	19	23	n.a.	n.a.	n.a.	n.a.				
	1974	112	47	42	21	19	44	39	n.a.	n.a.	n.a.	n.a.				
	1978	109	40	37	15	14	54	49	n.a.	n.a.	n.a.	n.a.				
	1981	105	31	30	19	18	55	52	n.a.	n.a.	n.a.	n.a.				
	1984	85	15	18	8	9	62	73	n.a.	n.a.	n.a.	n.a.				
	1987	89	13	15	10	11	66	74	n.a.	n.a.	n.a.	n.a.				
	1990	95	7	7	12	13	76	80	n.a.	n.a.	n.a.	n.a.				
	1993	95	6	6	8	8	81	85	n.a.	n.a.	n.a.	n.a.				
	1997	105	6	6	8	8	92	88	n.a.	n.a.	5	5				
	2000	84	3	4	4	5	55	65	14	17	8	10				

Since 1969 the percentage of refineries equipped with a biological step continuously increased.

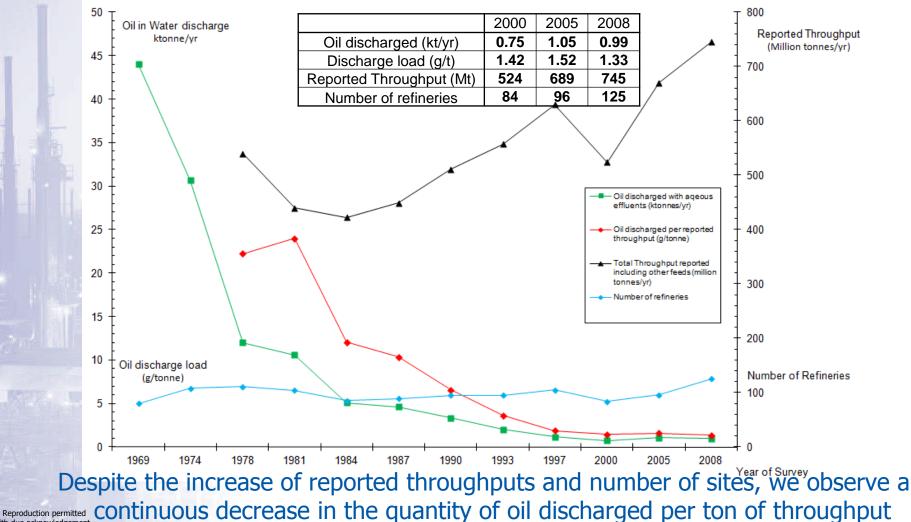
Reproduction permitted with due acknowledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

7	able 4	Wastewater treatment systems in oil refineries – 2005 data														
Year of Number of Refinery effluent discharges and th										luent discharges and their final treatment system:						
	survey	reported discharge points	C	3	G	A	G	В	GA	٨B	GA	BP	Exte WW	I		
			No.	%	No.	%	No.	%	No.	%	No.	%	No.	%		
	2005	113	3	3	10	9	25	23	65	59	5	5	13	12		

In 2005, 88% of the refineries had a biological treatment in place

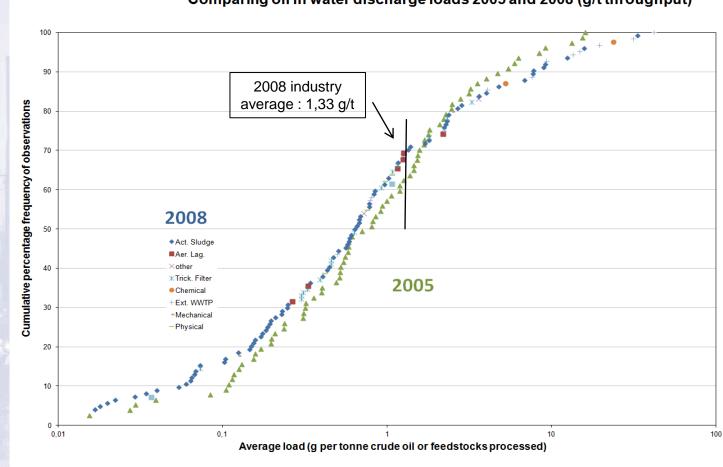
Table 5Final effluent treatment as reported for 2008 discharges.									
Treatment		Type of biological treatment							
3 Stage biological	103	Activated sludge	78						
Mechanical	2	16							
Chemical	2	Aerated lagoon	5						
Physical	4	Non aerated lagoon	1						
API	0	Fixed-bed bio-film reactor	1						
External WWTP	14	Aerated tank	1						
none	0	Other not specified	1						
		External not specified	14						
Total	125	Total	117						


In 2008, only 6% of the refineries were not equipped with a biological treatment!

Wastewater of 94% of the refineries is treated applying technologies described Reproduction permitted with due acknowledgement into the sectorial BREF (3 step biological treatment)

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

concawe Trends in oil discharged with aqueous effluent


Data gathered since 1969 on oil in water

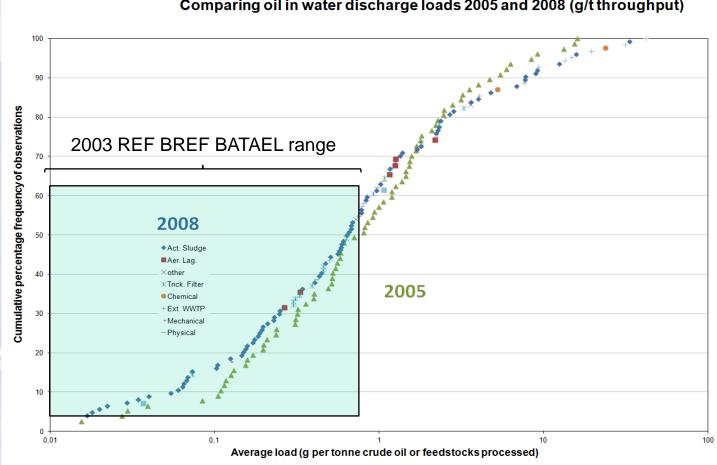
with due acknowledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

9th CONCAWE Symposium 14th & 15th March 2011

Comparing oil in water discharge loads 2005 and 2008 (g/t throughput)

A slight improvement in efficiency


Higher values for the last 20% (complexity , new reporting sites?, different level of pressure in European countries)

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

Reproduction permitted

with due acknowledgement

concawe

Comparing oil in water discharge loads 2005 and 2008 (g/t throughput)

In 2008 only 55% comply with the BATAEL range of the current BREF! How are HC measured in different countries?

Reproduction permitted with due acknowledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

9th CONCAWE Symposium 14th & 15th March 2011

concawe

- Different analytical methods used
 - In 2005 and 2009 surveys TPH is measured with 29 different methods
 - Time averaging variability:
 - Daily
 - Monthly
 - Yearly
 - How to report LoD?
 - ► QA/QC Directive
 - How to report LoQ
 - LoQ/2?

High level of uncertainty in the benchmark exercise : must be considered in BREF discussions (CONCAWE report 10/02)

Re	eproc	duction	permitted
vith	due	acknow	vledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL

Methods described in National or International Standards	Number of Refineries	Countries where used	LOD (mg/l)
ISO 9377		F, D, NL, N,	
	10	Hun	0.1 - 1
NF T 90-203	8	F	0.1 - 0.5
APHA 5520	6	GR, ES, P	0.1 - 0.2
IP 426	3	UK	0.5 - 1
IRSA 5140	2	lt	0.0005
IRSA 5160	2	lt	0.01 - 0.05
DEV H18	2	D	0.05 - 0.5
BBMS 036	1	F	Not reported
NFT 90-114	1	F	0.1
EA Blue Book 117517283A	1	UK	0.2
HMSO 1983	1	UK	0.1
UK 1412	1	UK	0.1
SCA 1983	1	UK	Not reported
ROG-2110	1	D	0.5
Waste water regulation	1	D	Not reported
SCR 1102	1	S	Not reported
SPI - SCR	1	S	0.2
SS 02 81 45-4	1	S	0.4
DS/R 209 modified	1	DK	0.1
PN-C-04565-01:1982	1	Pol	0.1
EPA METHOD 418 .1	1	GR	Not reported
Li National method	1	Lit	0.05
Other method descriptions			
IR	4	F, ES, CH	0.1
FT-ir spectroscopy	1	UK	Not reported
GC	1	Ν	0.1
Optical absorbance (3.4-3.5nm)	1	GR	Not reported
KW Index (HC Index)	1	D	Not reported
Total hydrocarbon analysis	1	СН	0.02
Methods not described	3	SU, NL, ES, D, It	0.0005 - 2
LOD Overall range (if known)			0.0005 - 2
			7

concawe Issues within the BREF revision/discussions

		Curren	t BREF			BREF D1	table 4.116				osed BAT rang	AT ranges		
Parameters	CONCENTRATION		LOADS g/tonne annual average		CONCENTRATION		LOADS				NTRATION		LOADS	
	Lower	Upper	Lower	Upper	mg/I annu Lower	ial average Upper	g/tonne and Lower	nual average Upper		lower 0,25	upper 3	lower 0,15	u	
Total hydrocarbon content	0,05	1,5 3	0,01	0,75	< 0.1	1	< 0.1	0,5	1	2	20	2		
Biochemical oxygen demand (5 day ATU @ 20 °C)	2	20	0,5	11	2	10	0,5	3						
Chemical oxygen demand (2 hour)	30	125	3	70	< 30	60	<10	25		20	100	15		
Ammoniacal nitrogen (as N)	0,25	10	0,1	6	0,25	2,5	0,1	1		0,5	10	0,2		
Total nitrogen	1,5	25	0,5	15	2	10	0.5	3		4	25	2,5		
Suspended solids (dried @ 105 °C)	2	50	1	25	< 5	15	1	5		5	25	2,5		
Total metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Zn)	< 0.1	4								0,1	4	n.a.	n	
TOC					5	15	1	5	1	1	20	0,5		

- BREF rapporteur and some MS want lower values (statistical approach instead of technical/environmental consideration)
- Figures proposed in the current draft are not realistic towards performances of BAT as shown earlier (BE and ES agree!)

CONCAWE has to defend BATAELs : achievable (technique based) and Reproduction permitted representative (yearly average and interdependent)

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrey, TOTAL 9th CONCAWE Symposium 14th & 15th March 2011 10

verage upper 2 20

70

15 25

n.a. 10

- CONCAWE trend reports demonstrate that since 1969, the oil discharges of refining industry has decreased continuously.
- This is achieved despite more and more complex refining schemes
- Improvements in treatment techniques (technology and operation) explain the observed trend for the whole refining sector
- Further improvements can still be expected for a minority of sites. Industrial Emissions Directive forces into that direction.
- Industry involvement in BREF revisions is crucial as the coming permit revisions will have to comply with BAT conclusions which are derived from this document.

CONCAWE members' support will be appreciated (questionnaires, doc comments/review)

Reproduction permitted with due acknowledgement

Industry Progress in Reducing Refinery Discharge Patrick Baldoni-Andrev, TOTAL

9th CONCAWE Symposium 14th & 15th March 2011 11

