

Refinery 2050: Concawe modelling exercise

Concawe Symposium - 18th March 2019 - Antwerp

Marta Yugo, Science Executive Damien Valdenaire, Science Executive

Reproduction permitted with due © Concawe acknowledgement

Refinery 2050: Opportunities and challenges

Vision 2050: The refinery as an ENERGY HUB...

... within an INDUSTRIAL CLUSTER

Vision 2050: The refinery as an ENERGY HUB...

Which technologies can be realistically implemented?

What are the external requirements?

When starting the transition?

Why to transition?

Refinery 2050 Modelling work

-

0

đ

B

H,

₩.

29

B

per-

X

Can the EU refining industry can effectively contribute to a low CO₂ economy?

Early-stage High efficiency operation

> **Evolution** Progressive introduction of low-emission components and low-carbon feedstocks

Future-stage

Hub for production and distribution of low-emission energy products and raw materials

Concawe Modelling work (EU Refining system)

CO₂ efficiency report (2030 and a look into 2050)

Refinery 2050 report

Step 2. Refinery 2050

Demand for Oil-based + Low Carbon fuels

Step 2. Refinery 2050

Step 2. Refinery 2050

The technologies are being developed....

REFHYNE

Advanced bio ... from biomass

Algae

Green H₂

... from waste

... from plastics

E-fuels

CCUS

Approx. 11% vol.
Approx. 8-8.5% vol.
Approx. 20% vol.
Approx. 4% vol.

Concawe

The conceptual assessments ...

- Explore the suitability of existing refineries for processing low-carbon feedstocks
- Not intended to be a roadmap
- Multiple additional pathways/feedstocks could be developed

The initial results show that:

- **Declining** in **demand** impacting the EU Refining system
- The EU Refining System can effectively contribute to EU long-term ambition in CLIMA
 - Availability of huge amounts of both renewable electricity and low-carbon feedstocks would be required
 - Challenges go beyond the refining battery limits
 - Strong R&D and financial support needed!

