

Report no. 5/19

Concawe Substance Identification Group Analytical Program Report (Abridged Version)

Concawe Substance Identification Group

Analytical Program Report (Abridged Version)

Prepared by: Stuart Forbes (Project Coordinator) on behalf of the Concawe Substance Identification Group

Reproduction permitted with due acknowledgement

© Concawe Brussels July 2019

ABSTRACT

This report describes the work undertaken and results obtained from the Concawe 2015 Analytical Program, which involved the chemical characterisation of 189 petroleum substances from 20 substance categories. As a limited number of samples were analysed per substance and in light of the Unknown or Variable Composition, Complex Reaction Products and Biological Materials (UVCB) nature of petroleum substances, the report provides supporting information only and should not be regarded as definitive for any substance.

To avoid the possibility that any analytical data presented can be attributed to a sample provided by a specific REACH registrant, the identities of 29 substances for which there are fewer than 3 active registrations have been "anonymised" by identifying only the category to which they belong. A further 6 petroleum substances for which there is only a single active registration within a category are omitted from this report. A full report on the 2015 Analytical Program includes data on all 189 substances and is available to Concawe secretariat only for reference purposes.

Given that, for most substances, this report relates to one sample per substance, Concawe is now combining these data with additional information to conduct a statistical analysis of the similarity between substances within a category. This information is relevant in the optimisation of human health and environmental hazard testing.

KEYWORDS

petroleum substance, substance identity, analytical chemistry, UVCB, composition

INTERNET

This report is available as an Adobe pdf file on the Concawe website (www.concawe.org).

NOTE

Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither Concawe nor any company participating in Concawe can accept liability for any loss, damage or injury whatsoever resulting from the use of this information.

This report does not necessarily represent the views of any company participating in Concawe.

CONTENTS		Page	
SUMMARY			VI
1.	INTRODUCT	ION 2013 ANALYTICAL PROGRAM	1 1
	1.2.	2015 ANALYTICAL PROGRAM	4
	1.2.1.	Strategy	5
	1.2.2.	Analysis of Samples	6
2.	ANALYSIS O	FSAMPLES	8
	2.1.	FIRST PHASE ANALYSIS OF SAMPLES	8
	2.1.1. 2 1 2	Physical Distillation	ð g
	2.1.2.	COMPARISON OF FIRST PHASE ANALYSIS RESULTS WITH	0
	2.2.	FORMAL SUBSTANCE DESCRIPTIONS	8
	2.3.	SECOND PHASE ANALYSIS OF SAMPLES	9
	2.3.1.	GCxGC	9
	2.3.2.	DHA-GC	10
	2.3.3.	PIONA-GC	10
	2.3.4.	PAH Analysis	10
	2.3.5.	PAC-2 Analysis	10
	2.3.6.	Elemental Analysis	11
	2.3.7.	FIMS	11
	2.3.8.	Spectroscopic Analysis	11
	2.3.7.	HDI C	17
	2.3.10.	TI C-EID	12
	2.3.12.	LCC	12
	2.3.13.	Viscosity	12
	2.4.	SAMPLES ANALYSED BY REGISTRANTS	12
3.	RESULTS AND DISCUSSION		14
	3.1.	COMPARISON OF RESULTS FROM 2013 AND 2015 ANALYTICAL	
	_	PROGRAMS	14
	3.1.1.	SIMDIS-GC	14
	3.1.Z.		14
	3.1.3.		14
	3.1. 4 . 3.1.5	PAH Analysis	14
	3.1.6.	PAC-2 Analysis	15
	3.2.	RESULTS FROM 2015 ANALYTICAL PROGRAM	15
	3.2.1.	SIMDIS-GC	15
	3.2.2.	Physical Distillation	16
	3.2.3.	GCxGC	17
	3.2.4.	DHA-GC	17
	3.2.5.	PIONA-GC	18
	3.2.6.	PAH Analysis	18
	3.2.7.	PAC-2 Analysis	10
	3.2.0.	FIMS	19
	3.2.7.	Spectroscopic Analysis	19
	3.2.11.	PCA Analysis	20
	3.2.12.	HPLC	21
	3.2.13.	TLC-FID	21
	3.2.14.	LCC	22
	3.2.15.	Viscosity	22

4.			23
	4.2	PROGRAMS	23
	4.2.	RESULTS FROM 2015 ANALYTICAL PROGRAM	23
5.	GLOSSARY		25
6.	ACKNOWLE	EDGEMENTS	26
7.	REFERENCE	ES	27
APPENDIX	1 - GCXGC RI PROGRAM	ESULTS FOR SAMPLES ANALYSED IN THE 2013 ANALYTICAL	47
APPENDIX	2 - EXAMPLE	OF PHYSICAL DISTILLATION REPORT (SAMPLE 019 - LBPN)	70
APPENDIX	3 - EXAMPLE	OF SIMDIS-GC REPORT (SAMPLE 023 - LBPN)	72
	4 - EXAMPLE	OF SIMDIS-GC REPORT (SAMPLE 049 - KEROSINE)	76
APPENDIX	5 - EXAMPLE	OF SIMDIS-GC REPORT (SAMPLE 121 - CGO)	80
APPENDIX	6 - EXAMPLE	OF SIMDIS-GC REPORT (SAMPLE 058 - HFO)	87
APPENDIX	7 - EXAMPLE	OF DHA-GC AND PIONA-GC REPORT (SAMPLE 146 - LBPN)	94
	8 - EXAMPLE	OF PAH REPORT (SAMPLE 176 - VHGO)	113
APPENDIX	9 - EXAMPLE	OF ELEMENTAL ANALYSIS REPORT (SAMPLE 190 - BITUMEN)	117
APPENDIX	10 - EXAMPL	E OF FIMS REPORT (SAMPLE 115 - OLBO)	130
APPENDIX	11(A) - EXAN	APLE OF UV, IR AND NMR SPECTRA (SAMPLE 043 - KEROSINE)	147
APPENDIX	11(B) - EXAN	NPLE OF UV, IR AND NMR SPECTRA (SAMPLE 129 - HFO)	151
APPENDIX	11(C) - EXAN	APLE OF UV, IR AND NMR SPECTRA (SAMPLE 145 - HRBO)	155
APPENDIX	11(D) - EXAN	APLE OF UV, IR AND NMR SPECTRA (SAMPLE X)	159
APPENDIX	12 - EXAMPL	E OF PCA REPORT (SAMPLE 075 - OLBO)	163
APPENDIX	13 - EXAMPL	E OF HPLC REPORT (SAMPLE 003 - CGO)	165
APPENDIX	14 - EXAMPL	E OF TLC-FID REPORT (SAMPLE 007 - HFO)	169
APPENDIX	15 - EXAMPL	E OF VISCOSITY REPORT (SAMPLE 182 - VHGO)	173

FIGURES Figure 1	Decision Tree employed in First Phase of 2015 Analytical Program	31
Figure 2	Relationship between volatility and carbon number for different hydroca functionalities	rbon 32
TABLES		
Table 1	Substances Investigated in the 2013 Analytical Program	33
Table 2	Detailed Inventory of Substances Investigated in the 2015 Analytical Program	38
Table 3	Summary of Substances Investigated in the 2015 Analytical Program	38
Table 4	Summary of Physical Distillation Results	38
Table 5	Summary of SIMDIS-GC Results	38
Table 6	Carbon Number Ranges in Petroleum Substance Descriptions	39
Table 7	Summary of Decision Tree Results	43
Table 8	Summary of GCxGC Results	43
Table 9	Summary of DHA-GC Results	43
Table 10	Summary of PIONA-GC Results	43
Table 11	Summary of PAH Results	43
Table 12	Summary of PAC-2 Results	43
Table 13	Summary of Elemental Analysis Results	43
Table 14	Carbon : Hydrogen Ratios	43
Table 15	Summary of FIMS Results	44
Table 16	3D Images of FIMS Results	46
Table 17	Summary of PCA Results	46
Table 18	Summary of HPLC Results	46
Table 19	Comparison of HPLC and GCxGC Results from 2015 Analytical Program	46
Table 20	Summary of TLC-FID Results	46
Table 21	Summary of LCC Results	46
Table 22	Comparison of LCC and TLC-FID Results from 2015 Analytical Program	46
Table 23	Summary of Viscosity Results	46
Table 24	Summary of Samples Examined by GCxGC	46

SUMMARY

This report describes the work undertaken and results obtained from the Concawe 2015 Analytical Program (AP), which involved the chemical characterisation of 189 petroleum substances (PS) from 20 substance categories. The 2015 AP extended a similar project carried out in 2013 but which only involved the characterisation of PS from 5 substance categories for which testing proposals were being submitted.

Samples of virtually all the substances investigated were first examined to check whether their composition was consistent with the formal substance description of the registered substance, most of which include an approximate carbon number and/or boiling point range. The samples were then examined in greater detail using a range of analytical techniques depending on their physical characteristics and chemical complexity.

The results obtained on the substances investigated are presented in this report together with comparisons of equivalent results obtained on the same samples analysed using different analytical techniques and, with few exceptions, show that:

- Results obtained on the same samples analysed in 2013 and 2015 are in good agreement.
- The chemical compositions of the samples analysed are consistent with their formal substance descriptions.
- Equivalent results obtained on the same samples using different techniques show good agreement.
- Spectroscopic analysis of PS provides no useful additional information for substance identification to that generated by the standard chromatographic techniques.

Note

This is an abridged version of the full report on the 2015 AP in which the analytical results generated on 6 substances for which there is only a single registration within a category have been excluded; and the identities of 29 substances for which there are fewer than 3 active registrations have been "anonymised" as shown in the table below. This has been necessary to avoid the possibility that any analytical data presented in this report can be attributed to a sample provided by a specific registrant.

Category of "anonymised" substance	Substance identifiers used in this report	Number of "anonymised" substances
Low Boiling Point Naphthas	Naphtha 1 - Naphtha 14	14
Other Lubricant Base Oils	OLBO 1 - OLBO 6	6
Kerosines	Kero 1 - Kero 4	4
Cracked Gas Oils	CGO 1 - CGO 3	3
Heavy Fuel Oils	HFO 1 - HFO 2	2
Total number of "anonymised"	29	

1. INTRODUCTION

REACH Regulation (EC) No 1907/2006 (Annex VI, item 2) includes general information and certain key principles for substance identification and states that the information submitted to support a registration should be sufficient to enable the substance to be identified, adding that if this is not technically possible or not considered scientifically necessary then the reasons should be clearly stated. Annex VI item 2 lists some eighteen sub-items to be considered for substance identification and refers to specific analytical information requirements, namely: spectral data (ultra-violet, infra-red, nuclear magnetic resonance or mass spectrum); and high-pressure liquid chromatogram, or gas chromatogram.

The PS involved in the 2015 AP are defined as UVCB (Unknown or Variable composition, Complex reaction products or Biological materials) substances and the REACH Regulation provides specific information for these materials. As previously described (1), PS vary tremendously in their chemical complexity: the lighter substances (e.g. LBPN; ~C4-C10) contain a few hundred individual components whereas middle-distillates (e.g. SRGO; ~C10-C25) contain many thousands of components and heavier substances (e.g. HFO; >C20) contain millions of individual components. The rapid increase in complexity with carbon number not only arises from the vast number of isomers present but also from the increased chemical functionality within individual component present in an HFO, it would not be feasible to employ a uniform set of chemical descriptors to provide a detailed classification of all the components present in all PS.

Because PS span such a wide range of components with widely different volatilities and polarities it is not possible to characterise all these substances using the same suite of analytical techniques. Concawe therefore recommends using a structured analytical approach tailored to the properties of each PS rather than employing a standard suite of analytical procedures as stated in the REACH Regulation and believes that some of the analytical data requirements specified in the Regulation provide no useful information for PS identification. Moreover, Concawe has always encouraged the use of standard industry methods for characterising PS because these methods have been developed and validated by the petroleum industry and are accepted by competent authorities and customers because they provide a strong technical basis for confirming consistent product quality and assessing potential health, safety and environmental hazards associated with these materials. Concawe therefore developed guidance (2, 3) based on standard industry methods to help member companies decide which analytical information they should include in IUCLID files when registering PS under REACH.

1.1. 2013 ANALYTICAL PROGRAM

Following discussions with ECHA, Concawe carried out an AP in 2013 which involved the chemical characterisation of PS from 5 substance categories (SRGO; OGO; VHGO; RAE; Bitumen) for which testing proposals were being submitted. **Table 1** shows the PS which were investigated in this project. Because testing proposals were being submitted for some of the substances, registrants were requested to supply large volumes (-20 L) of these materials so that any subsequent testing programs could be carried out on the same PS sample used for chemical characterisation. Large volumes of all samples shown in **Table 1** (except for CON 10) were eventually received but, owing to delays in obtaining two SRGO samples (CON 3 and CON 4), Concawe sought replacement samples of these two substances which were then designated CON 3I and CON 4I to differentiate them from the

original samples. No chemical characterisation work was carried out on CON 10 because it was not possible to obtain a large volume sample of this material.

The samples shown in **Table 1** were examined using both the methods recommended by Concawe for the appropriate substance categories (2) and, because some samples were expected to be used as test substances in subsequent studies, by additional procedures (e.g. GCxGC; GC-MS; PAC-2) to provide supplementary information on components (e.g. PAHs) present in the samples. The analytical work carried out on these samples is summarised below:

SRGO; OGO; VHGO

- Simulated distillation gas chromatography (SIMDIS-GC) to provide information on the boiling and carbon number ranges of the components present.
- Comprehensive two-dimensional gas chromatography (GCxGC) to provide quantitative information on the types of chemical functionalities present for each carbon number.
- High performance liquid chromatography (HPLC) to provide the total contents of mono-, di- and tri+ aromatic hydrocarbons present.
- High resolution gas chromatography-mass spectrometry (GC-MS) to provide information on the quantities of EPA and Grimmer poly-aromatic hydrocarbons (PAHs) present.
- Dimethyl sulfoxide (DMSO) extraction and GC-MS of the extract to provide information on the total quantities of 1, 2, 3, 4, 5, 6, 7+ ring poly-cyclic aromatic carbon (PAC) compounds present (PAC-2 analysis).

RAE; Bitumen

- SIMDIS-GC to provide information on the boiling and carbon number ranges of the components present.
- Thin layer chromatography with flame ionisation detection (TLC-FID) to provide quantitative information on the basic chemical functionalities (saturates, aromatics, resins, asphaltenes) present.
- High resolution GC-MS to provide information on the quantities of Grimmer and EPA poly-aromatic hydrocarbons (PAHs) present.

The detailed results obtained on all 30 samples analysed in the 2013 AP have been reported individually (4 - 33), and a summary of these results is shown below:

SIMDIS-GC results obtained on samples CON 1, CON 3, CON 4, CON 6, CON 7, CON 9, CON 11, CON 12, CON20, CON 21, CON 22, CON 23, CON 24, CON 25, CON 26 and CON 27 were in relatively good agreement with the corresponding substance descriptions shown Table 1. The substance descriptions for CON 17, CON 18 and CON 19 do not specify boiling or carbon number ranges, and the substance descriptions for samples CON 23 and CON 24 are somewhat inconsistent (i.e. >C34 and >495°C vs. >C50 and >360°C).

For the other samples: ~25% of CON 2 was above the specified boiling range; CON 3I was lighter than the specified boiling range; although the boiling range of CON 4I agreed with the substance description the sample appeared to consist predominantly of n-paraffins; ~ 50% of CON 5 was above the specified boiling range; CON 8 had a much narrower boiling range than that specified; CON 13 was somewhat heavier than the specified boiling range; ~40% of CON 14 was above the specified

boiling range; CON 15 was lighter than the specified boiling range; CON 16(i) and CON 16(ii) had broader boiling ranges than that specified, and ~30% of the CON 16(iii) was above the specified boiling range for this substance.

GCxGC results on the SRGO, OGO and VHGO samples showed that: CON 13 and CON 20 contained heavier range components than the other samples and that the highest concentrations of tri-aromatic hydrocarbons were found in CON 4 (3.38%) and CON 13 (2.90%); with the exception of CON 20 (2.47%), the hydrotreated samples (CON 7, CON 8, CON 9, CON 11, CON 14, CON 15) contained low concentrations (\leq 0.65%) of tri-aromatic hydrocarbons; CON 8 contained a high concentration of naphthenic components and a relatively low concentration of paraffinic components; CON 16(i), CON 16(ii) and CON 17 also contained low concentrations of tri-aromatic components but, according to the supplier, CON 16(i) and CON 16(ii) contained either a large quantity of kerosine or kerosine blended with hydrotreated gas oil, both of which would have a low tri-aromatic hydrocarbon content.

HPLC results on the SRGO, OGO and VHGO samples showed that, despite these data being obtained using a completely different measurement system (HPLC-RI) to GCxGC, there was generally good agreement between the results generated using these two techniques. There was some discrepancy for CON 13 which probably arose because it contained some heavier components which were slightly outside the normal measurement range for GCxGC, but HPLC showed that CON 13 contained the highest concentration of tri+aromatic hydrocarbons (4.2%) with CON 20 (3.3%) and CON 4 (2.8%) the next highest. CON 7, CON 8, CON 9, CON 11, CON 14 and CON 15 all contained low concentrations of tri+aromatic hydrocarbons consistent with hydrotreated materials as did CON 16(i), CON 16(ii) and CON 17.

Detailed PAH analysis results showed that CON 13 contained much lower concentrations of the lighter PAHs (2-3 ring) than all the other gas oil samples but contained the highest concentrations of the heavier PAHs (4-7 ring). CON 20 also contained significant concentrations of the heavier PAHs albeit lower than CON 13. These two samples contained the highest concentrations of the marker PAH, benzo[a]pyrene (CON 13 - 9.61 mg/kg; CON 20 - 3.12 mg/kg). CON 8 contained no significant concentrations of PAHs which is consistent with the HPLC results on this sample which showed it to have the lowest total aromatic content and to contain $\leq 0.1\%$ di- and tri-aromatic hydrocarbons. Among the bitumen samples, CON 21 and CON 25 contained much higher concentrations of PAHs were found in both RAE samples.

PAC-2 class analysis results on the SRGO, OGO and VHGO samples showed that, for the 3 ring and heavier aromatic compounds, the results obtained were relatively consistent with those obtained by HPLC and GCxGC. However, the PAC-2 class analysis results for 1 and 2 ring aromatic compounds were much lower than those measured using these procedures, presumably owing to the poor efficiency of the DMSO extraction procedure for these compounds. The PAC-2 procedure (34) was designed to mimic the DMSO extraction procedure (IP 346) developed for measuring PAC compounds in base oils (35) and is therefore not suitable for the quantitative measurement of 1 and 2 ring aromatic compounds. As reported above for the detailed PAH analysis, CON 13 and CON 20 contained the highest concentrations of heavier PACs (4-7 ring) with CON 13 containing measurable concentrations of 3-6 ring PACs and CON 20 containing measurable concentrations of 3-5 ring PACs.

TLC-FID results on RAE and bitumen samples showed all these samples to contain a significant quantity (55.8% - 84.0%) of aromatic hydrocarbons. An "unknown" fraction eluting between the saturate and aromatic fractions was observed in CON 24, CON 25 and CON 26 and, given that CON 24 and CON 25 are described as

hydrotreated substances, it seems plausible that this "unknown" fraction corresponds to partially hydrogenated aromatic components (e.g. naphthenic aromatic hydrocarbons).

1.2. 2015 ANALYTICAL PROGRAM

Following on from the 2013 AP, Concawe decided to extend the chemical characterisation of substances in the SRGO, OGO, VHGO, RAE and Bitumen categories to the remaining 15 PS categories. For completeness, 19 sub-samples of SRGO, OGO, VHGO and RAE samples from the 2013 AP were transferred to the 2015 AP to provide a comprehensive sample set covering all active registered PS in the 20 substance categories. **Table 2** provides a detailed inventory of all PS in the 2015 AP (minus the excluded substances), and a summary by category of all substances (including the excluded substances) is shown in **Table 3**.

Table 2 lists 203 sample numbers but this includes 11 substances which became "inactive" (e.g. no longer manufactured or imported) during the 2015 AP. These substances, which are highlighted in green in **Table 2**, were removed from the list of registered substances by Concawe leaving 192 "active" listings in the inventory.

For the following sample numbers registrants either supplied multiple samples or provided results on multiple samples of the same substance:

•	032	(11 samples)	032-258487; 032-258509; 032-261286; 032-265943; 032-265944; 032-265945; 032-262859; 032-659845; 032-664222; 032-668631; 032-258510
•	082R	(3 samples)	082R-320019; 082R-300050; 082R-635001
•	085	(4 samples)	085A; 085B; 085C; 085D
•	096	(2 samples)	096A; 096B

- 098 (2 samples) 098A; 098B
- 187 (2 samples) 187(1); 187(2)
- 198 (4 samples) 198-R21; 198-R32; 198-R42; 198-R62
- Naphtha 13 (4 samples)

Replacement samples (identified by the "R" suffix) were obtained for some substances because analysis of the original samples indicated that they were not representative of the registered substance, or the supplier subsequently informed Concawe that they had sent an invalid sample, or the registrant changed during the 2015 AP; these samples (080; 082; 104; 136; 163; 183) are highlighted in mauve in **Table 2**.

Extra samples of two substances (192; 193) were obtained from the registrant because the original samples had been exhausted during the analytical investigations; these samples (identified by the "X" suffix) are highlighted in blue in **Table 2**.

For some substances the registrants did not supply samples for the 2015 AP as requested but analysed the samples in their own laboratories and provided Concawe with the results. These samples (032-258487; 032-258509; 032-261286; 032-265943; 032-265944; 032-265945; 032-262859; 032-659845; 032-664222; 032-668631; 032-258510; 159; 167; Naphtha 12; 198-R21; 198-R32; 198-R42; 198-R62; Naphtha 13) are highlighted in amber in **Table 2**.

The 19 sub-samples of SRGO, OGO, VHGO and RAE samples from the 2013 AP which were transferred to the 2015 AP are highlighted in yellow in **Table 2**. Although these samples were allocated unique 2015 AP sample numbers, **Table 2** also shows their 2013 AP sample numbers as cross-referenced in **Table 1**.

In addition to providing an inventory of all samples involved in the 2015 AP, **Table 2** also indicates those substances which had no formal substance description or where the formal description was confusing, ambiguous or inconsistent. As shown in the "Comments" column of **Table 2**, Concawe proposed new descriptions for the "active" substances (003; Naphtha 2; Kero 2; 037; 042; 045; 052; 056; 057; 058; 059; OLBO 2; 094; 099; 109; OLBO 4; 117; Naphtha 11; 164) based on the substance names and the SIMDIS-GC results.

As summarised in **Table 3** and taking account of multiple samples and replacement samples, there are 221 valid "active" samples distributed across the 20 PS substance categories in the inventory. These samples represent 188 different CAS numbers and 189 different EC numbers.

1.2.1. Strategy

The samples used in the 2015 AP were supplied by registrants in response to requests from Concawe. Following instructions from the Concawe Project Coordinator, the Sample Coordination Laboratory (SGS UK Ltd, Billingham, UK) supplied sample containers and sampling instructions to the registrants who subsequently returned samples to SGS for retention under appropriate storage conditions. Using information provided by the Project Coordinator, SGS then prepared sub-samples of these materials and dispatched them to the appropriate analytical laboratories. The analytical data generated were reviewed and collated by the Project Coordinator before being shared with the Concawe Substance Identification Group (SIG).

Originally the 2015 AP was divided into two phases:

- In the first phase all substances were examined by SIMDIS-GC, and the lighter fractions (LBPN; Kerosine) were also examined by physical distillation. These techniques provided data on the carbon number and boiling point ranges of the substances which could then be compared with the corresponding substance descriptions to check whether the sample supplied was representative of the registered substance. If the first phase analysis showed that a sample was not representative of the registered substance, then a replacement sample was requested from the supplier.
- The second phase involved more detailed analysis of all samples which were representative of the registered substances using a range of analytical procedures depending on the physical characteristics and chemical complexity of the substances.

It was recognised that all the substances supplied were spot samples and, given that all PS are UVCBs and are manufactured to specifications based on performance characteristics rather than chemical composition, analysis of the same substance manufactured in the same location at different times could show a considerable variation in composition. Moreover, **Table 2** shows that many formal descriptions of PS contain qualitative (e.g. mainly, predominantly, approximately etc) rather than quantitative (e.g. >80%) terms, which means the judgement on whether a sample is representative of the registered substance can be somewhat subjective in nature. In order to gain a more objective assessment, the procedure described in Section 2.2 and illustrated in **Figure 1** was used to decide whether the sample supplied was representative of the registered substance.

1.2.2. Analysis of Samples

As with the 2013 AP, samples from the 2015 AP were analysed using both the standard industry methods which Concawe recommended to member companies for characterising their PS $^{(2, 3)}$ and by a range of other procedures to provide supplementary information on the substances. Detailed information on the methods employed is provided in Section 2 but the suite of analytical procedures employed is summarised below:

First Phase

- **SIMDIS-GC** carried out on all substances to provide information on the boiling and carbon number ranges of the components present.
- **Physical distillation** carried out on LBPNs and Kerosines to provide information on the boiling range of these substances.

Second Phase

- **GCxGC** carried out on most substances other than LBPNs to provide quantitative information on the types of chemical functionalities present for each carbon number.
- **DHA-GC** (Detailed hydrocarbon analysis gas chromatography) carried out on most LBPNs to provide qualitative and quantitative information on the individual components present.
- **PIONA-GC** (Paraffin, Iso-paraffin, Olefin, Naphthene, Aromatic gas chromatography) carried out on most LBPNs to provide quantitative information on these chemical functionalities present for each carbon number.
- **PAH** (Detailed poly-aromatic hydrocarbon analysis by high resolution gas chromatography-mass spectrometry) carried out on all substances other than LBPNs (except for some heavy LBPNs) to provide information on the quantities of EPA and Grimmer PAHs present.
- **PAC-2** (Poly-cyclic aromatic carbon analysis by DMSO extraction and gas chromatography-mass spectrometry) carried out on all substances other than LBPNs (except for some heavy LBPNs) to provide information on the total quantities of 1, 2, 3, 4, 5, 6, 7+ ring PACs present.
- Elemental analysis (C, H, N, O, S, As, Cd, Co, Cu, Fe, Mo, Ni, P, Pb, V, Zn, Cl, Hg, F) carried out on all substances to provide information on the major elements and specific minor elements present.
- **FIMS** (Field ionisation mass spectrometry) carried out on OLBOs and HRBO to provide quantitative information on the types of chemical functionalities present for each carbon number.
- **Spectroscopic analysis** carried out on all substances to provide UV, IR, ¹H-NMR and ¹³C-NMR spectra.
- **PCA** (Poly-cyclic aromatics analysis by DMSO extraction and gravimetric determination) carried out on OLBOs and HRBO to provide quantitative information on the total quantity of 3+ ring PCAs present.
- **HPLC** carried out on SRGOs, OGOs, VHGOs, CGOs, Kerosines, some heavy LBPNs, some light OLBOs and MK1 Diesel Fuel to provide quantitative information on the total quantities of mono-, di- and tri+ aromatics present.

- **TLC-FID** carried out on Bitumens, Oxidised Asphalt, HFOs, Paraffin and Hydrocarbon Waxes, Foots Oils, Petrolatums, Slack Waxes, UATOs, TDAE, UDAEs, RAEs and VHGO to provide quantitative information on the basic chemical functionalities (saturates, aromatics, resins, asphaltenes) present.
- LCC (Liquid column chromatography) carried out on Bitumen, Oxidised Asphalt, HFOs, Paraffin and Hydrocarbon Waxes, Foots Oils, OLBOs, HRBO, Petrolatums, Slack Waxes, UATOs, TDAE, UDAEs, RAEs, OGOs and VHGO to provide quantitative information on the basic chemical functionalities (saturates, aromatics, polars) present.
- Viscosity measurement carried out on all substances (OLBOs, UATOs, HFOs, VHGOs) for which a viscosity statement is included in the formal substance description.

As shown in Section 1.1, some of these techniques were used to characterise samples in the 2013 AP, namely:

- SIMDIS-GC carried out on SRGOs, OGOs, VHGOs, RAEs and Bitumens.
- **GCxGC** carried out on SRGOs, OGOs and VHGOs.
- **HPLC** carried out on SRGOs, OGOs and VHGOs.
- PAH carried out on SRGOs, OGOs, VHGOs, RAEs and Bitumens.
- **PAC-2** carried out on SRGOs, OGOs and VHGOs.
- TLC-FID carried out on RAEs and Bitumens.

2. ANALYSIS OF SAMPLES

Laboratories in Europe and USA were involved in carrying out the analytical characterisation work on samples from the 2015 AP. Following agreement within the Concawe SIG on which procedures should be employed for characterisation, a Request for Proposal (RfP) was prepared for each procedure describing the work to be undertaken and the samples to be analysed. These RfPs were then circulated to several laboratories considered capable of undertaking the work together with invitations to submit detailed tenders should they wish to be considered as potential service providers. Tenders were reviewed by the Concawe Executive and the Project Coordinator who then made a recommendation to the SIG on which laboratories should be appointed to support the 2015 AP. Following approval by SIG, Concawe then prepared a formal contract with each laboratory involved in the program.

2.1. FIRST PHASE ANALYSIS OF SAMPLES

2.1.1. Physical Distillation

Physical distillation was carried out on the LBPN and Kerosine samples to provide information on the boiling range of these substances for comparison with the boiling range information provided in the formal substance descriptions shown in **Table 2**. Analysis was carried out according to ASTM D86 ⁽³⁶⁾ by Intertek (ITS Testing Services UK Ltd, Sunbury-on-Thames, UK). **Appendix 2** shows an example report for Sample 019 (LBPN), and **Table 4** summarises the physical distillation results for all the samples analysed.

2.1.2. SIMDIS-GC

SIMDIS-GC was carried out on samples of all substances in the 2015 AP to provide information on the boiling and carbon number ranges of the components present for comparison with the corresponding information provided in the formal substance descriptions shown in **Table 2**. Some samples were analysed by Intertek (ITS Testing Services UK Ltd, Sunbury-on-Thames, UK) and others by ENI (ENI Downstream Laboratories, Milan, Italy). Different SIMDIS-GC methods were employed depending on the boiling range of the samples.

Analysis of the lighter substances was carried out by Intertek according to ASTM D7096 ⁽³⁷⁾ and ASTM D2887 ⁽³⁸⁾; Appendices 3 and 4 show example reports for Sample 023 (LBPN) and Sample 049 (Kerosine) respectively. ENI analysed the heavier substances according to ASTM D2887 ⁽³⁸⁾ and EN 15199-2 ⁽³⁹⁾, and Appendices 5 and 6 show example reports for Sample 121 (CGO) and Sample 058 (HFO) respectively. **Table 5** summarises the SIMDIS-GC results for all the samples analysed. The laboratories were requested to provide both the boiling point profiles and the carbon number distributions for the samples analysed, both data sets being relative to the boiling points of n-alkanes which were used to calibrate the SIMDIS-GC systems.

2.2. COMPARISON OF FIRST PHASE ANALYSIS RESULTS WITH FORMAL SUBSTANCE DESCRIPTIONS

As indicated in Section 1.2.1, the prime purpose of the first phase study was to determine whether the chemical compositions of the samples supplied were

consistent with the formal substance descriptions, most of which are based on carbon number and/or boiling point ranges. To ensure objectivity in this assessment it was necessary to define the parameters used to judge whether a sample was representative of the registered substance, and **Figure 1** shows the decision tree that was developed for this purpose.

It was decided that $\ge 80\%$ (m/m) should be used to quantify terms such as "mainly", "predominantly" and "approximately" which are used extensively in the formal PS descriptions. It was also deemed appropriate to adjust the carbon number ranges given in the substance descriptions depending on the relative width of the carbon number range. As shown in **Figure 1**, adjustments of $\pm 10\%$ and $\pm 20\%$ were employed at different points in the decision tree to account for the fact that a substance with a wide carbon number range would be expected to exhibit greater variation at the limits of the range than a substance having a very narrow carbon number range. **Table 6** lists the $\pm 10\%$ and $\pm 20\%$ adjustments applied for the carbon number ranges defined in the formal substance descriptions.

For substances where both carbon number and boiling point ranges are defined in the substance description, the former was used to judge compliance based on SIMDIS-GC measurements being carried out on all substances whereas physical distillation was only performed on LBPN and Kerosine substances. For substances where neither of these parameters are defined but some other descriptor is given (e.g. viscosity), then compliance was based on the measured value being within $\pm 10\%$ of the defined value.

As shown in **Table 2**, some substances have no formal description, or the substance description is confusing or inconsistent. In such cases Concawe developed a substance description based on the substance name and the carbon number and boiling point ranges of similar materials in the same substance category.

Figure 1 shows that there are 9 possible outcomes when using the decision tree to determine whether the chemical compositions of the samples supplied were consistent with the formal substance descriptions: 4 outcomes denote acceptance (2, 6, 8, 9); 2 outcomes denote rejection (3, 4); and 3 outcomes denote review (1, 5, 7) signifying that the analytical data required further examination before making a final decision on acceptance or rejection.

Table 7 summarises the results obtained by applying the decision tree shown inFigure 1 to the samples supplied for the 2015 AP.

2.3. SECOND PHASE ANALYSIS OF SAMPLES

Although Section 1.2.2 indicates the PS categories which were investigated using the procedures employed in the second phase analysis, it was not always possible to analyse every sample in a category by a specific method because the first phase analysis had shown that some samples were outside the scope of some methods.

2.3.1. GCxGC

GCxGC was carried out on most substances other than LBPNs to provide quantitative information on the types of chemical functionalities present for each carbon number. Analysis was carried out by Shell (Shell Technology Centre, Amsterdam, Netherlands). Samples containing components <C8 had to be analysed using a

combination of GCxGC and DHA-GC owing to the lower carbon number limit of the GCxGC technique; this enabled a comprehensive analysis of these samples to be carried out. Owing to the upper carbon number limit of GCxGC, only those components lighter than ~C30 could be determined in the heavier PS samples analysed and consequently these samples could not be comprehensively analysed. Samples which had been found by SIMDIS-GC to contain <5% (m/m) of <C30 components were not submitted for GCxGC analysis. **Table 8** summarises the GCxGC results for all the samples investigated.

2.3.2. DHA-GC

DHA-GC was carried out on most LBPNs to provide qualitative and quantitative information on the individual components present. Analysis was carried out according to ASTM D6730 ⁽⁴⁰⁾ by ENI (ENI Downstream Laboratories, Milan, Italy). **Appendix 7** shows an example report for Sample 146, and **Table 9** summarises the DHA-GC results for all the samples analysed. In addition to reporting individual component data, the DHA-GC software grouped these data by summing the concentrations of n-paraffins, iso-paraffins, olefins, naphthenes and aromatics present to also provide the DHA-GC results in a PIONA-GC style format.

2.3.3. PIONA-GC

PIONA-GC was carried out by ENI on all the LBPN samples which they had analysed by DHA-GC (Section 2.3.2) to provide quantitative information on the different classes of hydrocarbons (naphthenes, paraffins, cyclic olefins, olefins, aromatics and oxygenates) present for each carbon number. Analysis was carried out according to EN 22854 ⁽⁴¹⁾ and, as shown in **Appendix 7**, the PIONA-GC results were included at the end of each sample report. **Table 10** summarises the PIONA-GC results for all the samples analysed.

2.3.4. PAH Analysis

PAH analysis was carried out on all substances other than LBPNs (except for some heavy LBPNs) to provide information on the quantities of EPA and Grimmer PAHs present. Some 32 individual PAHs were determined ranging from naphthalene (2-rings) to coronene (7-rings). Analysis was carried out by BIU (Biochemical Institute for Environmental Carcinogens, Hamburg, Germany) using proprietary methodology based on high resolution GC-MS with selective ion monitoring and deuterated internal standards for quantification ⁽⁴²⁾. Appendix 8 shows an example report for Sample 176 (VHGO), and Table 11 summarises the PAH results for all the samples analysed.

2.3.5. PAC-2 Analysis

PAC-2 analysis was carried out on all substances other than LBPNs (except for some heavy LBPNs) to provide information on the total quantities of 1, 2, 3, 4, 5, 6, 7+ ring PACs present. Analysis was carried out by Port Royal Research (Hilton Head, South Carolina, USA) using proprietary methodology developed by Mobil which involved DMSO extraction and GC-MS analysis ⁽³⁴⁾. Naphthalene, phenanthrene, benz[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene and coronene were employed as retention markers for the unresolved 1, 2, 3, 4, 5, 6, 7+ ring PAC compounds present. Quantification was carried out by measuring the total peak areas between the retention markers to the corresponding classes of PAC compounds. Table 12 summarises the PAC-2 results for all the samples analysed.

2.3.6. Elemental Analysis

Elemental analysis was carried out on all substances to provide information on the concentrations of carbon, hydrogen, nitrogen, oxygen, sulphur, arsenic, cadmium, cobalt, copper, iron, molybdenum, nickel, phosphorus, lead, vanadium, zinc, chlorine, mercury and fluorine present. Analysis was carried out by Intertek (ITS Testing Services UK Ltd, Sunbury-on-Thames, UK) using several methods for the different elements measured. The carbon, hydrogen and nitrogen content were determined using a combustion analyser according to a modified version of ASTM D5291 ⁽⁴³⁾; oxygen was measured by pyrolysis using an oxygen analyser; sulphur was measured by wavelength dispersive X-ray fluorescence spectrometry (WD-XRF) for higher sulphur concentrations ($\geq 0.001\%$ m/m), and by UV fluorescence (UVF) according to ASTM D5453 ⁽⁴⁴⁾ for lower sulphur concentrations ($\leq 0.001\%$ m/m); chlorine was determined by monochromatic wavelength dispersive X-ray fluorescence spectrometry (MWD-XRF) according to ASTM D7536 ⁽⁴⁵⁾; mercury was measured using cold vapor atomic absorption spectrometry (CVAAS) according to IP 594 ⁽⁴⁶⁾; fluorine was measured by combustion and ion chromatography according to ASTM D7539 ⁽⁴⁷⁾; the remaining elements were all determined using inductively coupled plasma - optical emission spectrometry (ICP-OES). Appendix 9 shows an example report for Sample 190 (Bitumen), and Table 13 summarises the elemental analysis results for all the samples analysed.

2.3.7. FIMS

FIMS was carried out on all OLBOs and a HRBO to provide quantitative information on the different classes of saturated hydrocarbons (acyclic alkanes; mono-, bi-, tri-, tetra-, penta-, hexa-cycloalkanes) and aromatic hydrocarbons (alkyl benzenes; indanes; indenes; naphthalenes/dibenzothiophenes; acenaphthenes/bi-phenyls; acenaphthylenes/fluorenes; phenanthrenes; benzothiophenes; fluoranthenes/pyrenes; benzanthracenes/chrysenes) present for each carbon number. Analysis was carried out by Intertek (ITS Testing Services UK Ltd, Sunburyon-Thames, UK) and involved an initial HPLC separation of the oil samples into saturate and aromatic fractions according to IP 368 (48) followed by FIMS analysis of each fraction. The saturate fraction was also examined by GC according to IP 480 ⁽⁴⁹⁾ to determine the quantities of normal and branched acyclic alkanes present. Appendix 10 shows an example report for Sample 115 (OLBO), and Table 15 summarises the FIMS results for all the samples investigated. It should be noted that some samples (118, 119, 145, 153, 154) only consisted of saturated components and consequently for these samples there was no aromatic fraction on which to carry out FIMS analysis.

2.3.8. Spectroscopic Analysis

Spectroscopic analysis was carried out on all substances to provide UV, IR, ¹H-NMR and ¹³C-NMR spectra on each sample supplied. Analysis was carried out by Kuwait Petroleum (Kuwait Petroleum Research and Technology, Europoort, Netherlands) and **Appendix 11(a-d)** shows example spectra for the following samples: 043 (Kerosine); 129 (HFO); 145 (HRBO); Sample X. In addition to the spectral images, raw spectral data (e.g. wavenumber <u>vs</u>. intensity) were provided as Excel files to facilitate multi-variate statistical examination of the data to see whether correlations might exist between spectral information and PS categories.

2.3.9. PCA Analysis

PCA analysis was carried out on OLBOs, TDAE, UDAEs, Foots Oils, Petrolatums, RAEs and HRBO to provide quantitative information on the total quantity of 3+ ring PCAs

present. Analysis was carried out according to IP 346 ⁽³⁵⁾ by Intertek (ITS Testing Services UK Ltd, Sunbury-on-Thames, UK). Appendix 12 shows an example report for Sample 075 (OLBO), and Table 17 summarises the PCA results for all the samples analysed.

2.3.10. HPLC

HPLC was carried out on LBPN, Kerosine, SRGO, OGO, VHGO, CGO, Mk1 Diesel Fuel, OLBO and HFO samples, which had been selected to be within the scope of the method, to provide quantitative information on the total quantities of mono-, diand tri+ aromatics present. Analysis was performed according to IP 548 ⁽⁵⁰⁾ by Intertek (ITS Testing Services UK Ltd, Sunbury-on-Thames, UK). **Appendix 13** shows an example report for Sample 003 (CGO), and **Table 18** summarises the HPLC results for all the samples analysed.

2.3.11. TLC-FID

TLC-FID was carried out on Bitumens, Oxidised Asphalt, HFOs, Paraffin and Hydrocarbon Waxes, UATOs, TDAEs, UDAEs, Foots Oils, Petrolatums, Slack Waxes, RAEs and a VHGO to provide quantitative information on the basic chemical functionalities (saturates, aromatics, resins, asphaltenes) present. Analysis was carried out according to IP 469⁽⁵¹⁾ by Nynas (Nynas AB, Nynäshamn, Sweden). Appendix 14 shows an example report for Sample 007 (HFO), and Table 20 summarises the TLC-FID results for all the samples analysed.

2.3.12. LCC

LCC was carried out on Bitumens, Oxidised Asphalt, HFOs, Paraffin and Hydrocarbon Waxes, UATOs, TDAEs, UDAEs, Foots Oils, Petrolatums, Slack Waxes, RAEs, OLBOs, HRBO, OGOs and a VHGO to provide quantitative information on the basic chemical functionalities (saturates, aromatics and polars) present. Analysis was carried out according to ASTM D2007⁽⁵²⁾ by Kuwait Petroleum (Kuwait Petroleum Research and Technology, Europoort, Netherlands). **Table 21** summarises the LCC results for all the samples analysed.

2.3.13. Viscosity

Viscosity measurements were carried out on all those substances (mainly OLBOs) for which a viscosity statement is included in the formal substance description. Analysis was carried out according to ASTM D445 ⁽⁵³⁾ and ASTM D2161 ⁽⁵⁴⁾ by SGS (SGS UK Ltd, Ellesmere Port, UK). **Appendix 15** shows an example report for Sample 182 (VHGO), and **Table 23** summarises the viscosity results for all the samples analysed.

2.4. SAMPLES ANALYSED BY REGISTRANTS

As indicated in Section 1.2, some LBPN substances were not supplied by the registrants owing to their concerns over safe transportation of the samples to the Sample Coordination Laboratory. These substances were therefore analysed in their own laboratories and the results sent to Concawe. Although the Project Coordinator provided information to these registrants on the suite of analyses which Concawe would like carried out, more limited dossiers of results were supplied. The samples analysed by the registrants are listed below together with a summary of the data supplied:

- Sample 032: The registrant provided SIMDIS-GC and DHA-GC data on 11 different samples of this substance originating from 4 different legal entities, and spectroscopic data (UV, IR, ¹H-NMR) on a single sample from each entity. Because the SIMDIS-GC data only provided information on the boiling point distribution (not the carbon number distribution) of the 11 samples and did not show the initial boiling point or the boiling point profile for the lighter components present, the entries shown in Table 5 were compiled from the DHA-GC data.
- Sample 159: The registrant provided SIMDIS-GC and DHA-GC data on this sample. Because the SIMDIS-GC data only provided information on the boiling point distribution (not the carbon number distribution) of this sample, the entries shown in Table 5 were compiled from the DHA-GC data.
- Sample 167: The registrant provided SIMDIS-GC and Physical Distillation data on this sample, but the SIMDIS-GC data only provided information on the boiling point distribution (not the carbon number distribution). Consequently only the carbon number range (estimated from the boiling point range) is shown in Table 5.
- Naphtha 12: The registrant only provided a DHA-GC raw data file on this sample, and consequently only the carbon number range (not the carbon number distribution) is shown in Table 5.
- Sample 198: The registrant only provided DHA-GC and PIONA-GC data on 4 different samples of this substance, and consequently the entries shown in Table 5 were compiled from the DHA-GC results.
- Naphtha 13: The registrant only provided DHA-GC and PIONA-GC data on 4 different samples of this substance, and consequently the entries shown in Table 5 were compiled from the DHA-GC results.

3. **RESULTS AND DISCUSSION**

3.1. COMPARISON OF RESULTS FROM 2013 AND 2015 ANALYTICAL PROGRAMS

As indicated in Section 1.2, 19 sub-samples of SRGO, OGO, VHGO and RAE samples from the 2013 AP were transferred to the 2015 AP to provide a comprehensive sample set covering all active registered PS in the 20 substance categories. In the 2013 AP the SRGO, OGO, VHGO samples had been analysed by SIMDIS-GC, GCxGC, HPLC, PAH analysis and PAC-2 analysis; and the RAE samples by SIMDIS-GC, TLC-FID and PAH analysis. These samples were analysed alongside other samples of registered PS during the 2015 AP using both the techniques employed in the 2013 AP and other techniques as described in Section 2.3. It was therefore possible to compare the results generated on the same samples before and after a two-year storage period. SIMDIS-GC, GCxGC, HPLC and TLC-FID analyses were carried out by different laboratories in the 2013 and 2015 programs whereas PAH analysis and PAC-2 analysis were carried out by the same laboratory for both studies.

3.1.1. SIMDIS-GC

Comparison of the boiling point distributions obtained by SIMDIS-GC and previously reported for the 2013 AP ^(4-6, 8, 10, 12, 14, 16-21, 23-26, 32, 33) and summarised in **Table 5** for the 2015 AP show good agreement between the results obtained on the same samples despite the analyses having been carried out by different laboratories using different SIMDIS-GC software systems and on samples which had been stored for approximately two years.

3.1.2. GCxGC

GCxGC analysis on the same samples was only carried out on Samples 173 (CON 7) and 176 (CON 13), the results of which have been previously reported for the 2013 AP $^{(12, 17)}$ and are shown in **Table 8** for the 2015 AP. Relatively good agreement was obtained between the two sets of results for Sample 173 (CON 7) but Sample 176 (CON 13) showed poorer agreement, possibly owing to the presence of heavier (>C30) components in this sample which are not amenable to GCxGC.

3.1.3. HPLC

Comparison of the mono-, di- and tri+ aromatic contents obtained by HPLC and previously reported for the 2013 AP ^(4-6, 8, 10, 12, 14, 16-21, 23, 24, 26) and summarised in **Table 18** for the 2015 AP show good overall agreement between the results obtained given that the analyses were carried out by different laboratories on samples which had been stored for approximately two years.

3.1.4. TLC-FID

Good agreement was obtained between the TLC-FID results for the two RAE substances, Samples 185 (CON 26) and 186 (CON 27), analysed in the 2013 and 2015 programs given that the analyses were carried out by different laboratories on samples which had been stored for approximately two years. Both samples contained an "unknown" peak in the 2013 AP ^(32, 33) which eluted between the saturate and aromatic peaks and most probably arose from partially hydrogenated aromatic components (e.g. naphthenic aromatic hydrocarbons). In the 2015 AP results, which are summarised in **Table 20**, this peak was included with the aromatic components and consequently the "unknown" peak in the 2013 AP results has been included with the aromatic components when comparing the results from both programs.

3.1.5. PAH Analysis

The 2013 AP involved measurement of 28 individual PAHs in SRGO ^(4-6, 8, 10), OGO ^(12, 14), VHGO ^(16-21, 23-26) and RAE ^(32, 33) samples but, as shown in **Table 11**, this was extended to cover 32 individual PAHs in the 2015 AP. Comparison of the results obtained from both studies for the corresponding PAHs in the same samples showed very good agreement, especially considering that this involved the trace level analysis of individual chemical components in relatively complex sample matrices. The only discrepancies in results were found for Sample 169 (CON 2) which, given the very good results agreement obtained for the other 18 samples, suggests that an error was made by the Sample Coordination Laboratory or the Analytical Laboratory in the handling and/or labelling of this sample.

3.1.6. PAC-2 Analysis

Good agreement was obtained between the results obtained by PAC-2 analysis for all the SRGO, OGO and VHGO samples examined in the 2013 AP ^(4-6, 8, 10, 12, 14, 16-21, 23-26) and the 2015 AP (**Table 12**). Some minor discrepancies for 1-ring and 2-ring PACs were observed but this is not surprising because, as indicated in Section 1.1, these lighter aromatic compounds are not quantitatively removed by the DMSO extraction employed in the PAC-2 procedure.

3.2. RESULTS FROM 2015 ANALYTICAL PROGRAM

3.2.1. SIMDIS-GC

As discussed in Section 2.2, carbon number ranges obtained by SIMDIS-GC (**Table 5**) were used to judge whether the supplied samples were representative of the registered PS based on the formal substance descriptions. As shown by the shaded areas (yellow) and the summation values (red) in **Table 5**, for the great majority of samples examined $\geq 80\%$ (m/m) of the components present were within the defined carbon number ranges.

For the 218 samples listed in Table 5:

- 179 samples have $\ge 80\%$ (m/m) of components within the defined carbon number range.
- 17 samples have ≤80% (m/m) of components within the defined carbon number range (Naphtha 1; CGO 1; Naphtha 5; 042; Naphtha 7; 067; 068; 080; 094; 098B; 107; Kero 4; 141; 163; 177; 188; 198-R21) although 4 of these samples (CGO 1; 098B; 141; 188) are borderline in having ≥79% (m/m) of components within the defined range. Moreover, PIONA-GC showed that a further 3 samples (Naphtha 1; 042; 094) actually contained ≥80% (m/m) of components within the defined range when examined using this technique. SIMDIS-GC measures carbon number distribution using n-alkanes as retention calibrants and consequently, as illustrated in Figure 2, significant discrepancies can arise with samples containing large concentrations of other hydrocarbon functionalities such as 042 and 094, which consist almost entirely of aromatic hydrocarbons.
- 22 samples have no defined carbon number range (014; OLBO 1; CGO 2; 053; 078; 079; 091; Naphtha 9; Naphtha 10; 129; 131; 171; 181; 182; 183; 183R; 193; 193X; Naphtha 13).

Although some 93% of samples with a defined carbon number range had \ge 80% (m/m) of components within this range, it was considered important to also take account

of the carbon number distribution within the defined range when assessing how well the composition of each sample agreed with the formal substance description. For example, it could be argued that a sample which only contains C9-C10 components is not representative of a substance with a defined range of C6-C15 despite having 100% of the components within the defined carbon number range.

The decision tree depicted in **Figure 1** takes account of the measured carbon number distribution, or other measured properties (e.g. boiling point range; viscosity) for those substances with no defined carbon number range. As shown, there are 9 possible outcomes when assessing whether the measured composition is consistent with the formal substance description. The results obtained by applying the decision tree to each sample supplied for the 2015 AP are shown in **Table 5**, and **Table 7** provides a summary of these results (including the excluded samples).

For the samples listed in Table 5:

- 101 samples met one of the 4 "Accept" criteria $[2\ 6\ 8\ 9]$ defined by the decision tree.
- 107 samples met one of the 3 "Review" criteria [① ⑤ ⑦] defined by the decision tree, 89 being classified as "Review ⑤" because the carbon number distribution was narrower than that defined in the formal substance description (≤1% (m/m) of components present at the upper and/or lower carbon number range).
- 7 samples met one of the 2 "Reject" criteria [③ ④] defined by the decision tree, 6 of which were classified as "Reject ③". These samples (Naphtha 5; 067; 080; 107; 163; 177) only contained 40-68% (m/m) of the components defined in the formal substance descriptions. The remaining sample (OLBO 1) was only defined by viscosity, and it was rejected because the measured viscosity was much higher than that defined in the formal substance description.

Although the first phase analysis of samples was originally planned as a screening process to identify samples which were not representative of the registered substance and would not therefore proceed to the more detailed second phase analysis, it was found that only a small number of samples were rejected because SIG decided that, despite some samples being reviewed owing to their carbon number distribution, all samples with $\geq 80\%$ (m/m) of components within the defined carbon number range should proceed to second phase analysis. Moreover, there were significant delays in the supply of samples from some registrants and, to avoid delays in commencing the second phase studies and promote efficiency in the preparation and despatch of samples by the Sample Coordination Laboratory, virtually all samples proceeded to second phase of program.

3.2.2. Physical Distillation

The physical distillation results obtained on the LBPN and Kerosine samples are presented in **Table 4** alongside the substance descriptions. From a subjective analysis of the data approximately 40% of the measured boiling point ranges were in relatively good agreement with the values given in the formal substance descriptions. Clearly several LBPN descriptions refer to low initial boiling points (<10°C) which were beyond the scope of the physical distillation procedure ⁽³⁶⁾ employed in this study.

As might be expected for those samples where the physical distillation results and substance descriptions were in good agreement, comparison with the results of the

decision tree analysis described in Section 3.2.1 showed that the vast majority of these samples met the "Accept ③" criterion. A few samples met the "Review ⑤" criterion owing to the absence (i.e. $\leq 1\%$ (m/m)) of the lower range components; and Naphtha 5, which has a very narrow carbon number range definition, met the "Reject ③" criterion despite the good agreement between physical distillation data and the substance description.

Most of the samples where the physical distillation results showed poor agreement with the substance descriptions met the "*Review* \mathfrak{S} " criterion, although a few met the "*Review* \mathfrak{T} " criterion owing to large discrepancies between measured and defined final boiling points.

3.2.3. GCxGC

Although only substances containing components in the ~C8-C30 range can be comprehensively examined by GCxGC, making it best suited to the analysis of middle-distillate substances such as kerosines and the lighter gas oils, this technique was applied to a wide range of PS in the 2015 AP including CGO, HFO, Kerosine, OLBO, MK1 Diesel Fuel, Paraffin and Hydrocarbon Wax, UATO, TDAE, UDAE, Foots Oil, Petrolatum, Slack Wax, HRBO, SRGO, OGO, VHGO, Oxidised Asphalt and some heavy LBPN samples.

Table 24 provides a summary of the samples analysed in the 2015 AP and the detailed GCxGC results for each sample are presented in **Table 8**. As described in Section 1.1, GCxGC results on those samples which were transferred from the 2013 AP have been previously reported ⁽⁴⁻²⁶⁾, and the results tables from these reports are shown in **Appendix 1** for reference purposes.

As shown in **Table 24**, the proportion of each sample which was amenable to GCxGC analysis ranged from 6.3% (m/m) for Oxidised Asphalt to 100% (m/m) for the lighter PS, and the GCxGC recoveries obtained were in very good agreement with the corresponding SIMDIS-GC recoveries for <C31 components (except for Sample 127 where the SIMDIS-GC analysis should possibly be repeated). Because the heavy naphtha samples (Naphtha 7; 076; 141; 158) contained some <C8 components, which are too volatile for quantitative trapping in the GCxGC modulator, these samples were characterised using a combination of GCxGC and DHA-GC.

The detailed GCxGC results presented in **Table 8** are consistent with the anticipated composition of each sample analysed. For example: Paraffin and Hydrocarbon Wax (061; 062; 065) and Slack Wax (127; 136R; 152) samples contained a high proportion of n-paraffins; no significant concentrations of aromatic components were found in the HRBO sample (145); and the non-hydrotreated, catalytically cracked substances (008; 034; 106; 130; 155) contained high concentrations of aromatic hydrocarbons.

3.2.4. DHA-GC

All but the heavy LBPN samples were examined by DHA-GC and the results obtained are shown in **Table 9**. The data are presented as a list of the individual hydrocarbons found in the sample together with their concentrations. Although not shown in **Table 9**, the individual reports on each sample contain DHA-GC data where, in addition to reporting the concentration of each component present, the DHA-GC results have been grouped by summing the concentrations of n-paraffins, iso-paraffins, olefins, naphthenes and aromatics present to provide the DHA-GC results in a PIONA-GC format. These results showed good agreement with those obtained on the same samples using the PIONA-GC technique (see Section 2.3.3 and Section 3.2.5).

3.2.5. PIONA-GC

In addition to DHA-GC analysis, the LBPN samples were also examined by PIONA-GC and the results obtained are presented in **Table 10** (these results are also shown in **Table 5** alongside the SIMDIS-GC results on the corresponding samples). Whereas the DHA-GC results were grouped into n-paraffins, iso-paraffins, olefins, naphthenes and aromatics for presentation in a PIONA-GC format (see Section 2.3.2 and Section 3.2.4), the actual PIONA-GC results were grouped into naphthenes, paraffins, cyclic olefins, olefins, aromatics and oxygenates.

3.2.6. PAH Analysis

The detailed results on all samples analysed are shown in **Table 11**. Data are presented for each of the 32 individual PAHs determined together with the results obtained from grouping the individual PAHs by ring number. The samples in **Table 11** have also been grouped by category to facilitate comparison between different substances in the same category.

Given the vast difference in toxicity index between individual PAHs, a high total concentration of the 32 individual PAHs measured does not necessarily infer that these substances will exhibit the greatest toxicity. However, it is clear from the data presented in **Table 11** that virtually all substances in some categories, such as Paraffin and Hydrocarbon Waxes, Slack Waxes, Petrolatums and OLBOs, have very low total concentrations of the measured PAHs.

In contrast, the highest total concentrations were found in samples in the CGO (106; 130) and HFO (008; 034; 155) categories which contained between ~2% (m/m) and ~7% (m/m) of the measured PAHs. As described in Section 3.2.3, these are the same samples which were found to contain the highest concentrations of aromatic hydrocarbons when examined by GCxGC. The highest concentrations of the widely used PAH marker compound, benzo[a]pyrene, were found in two of these HFO samples: 008 (794 mg/kg) and 034 (1089 mg/kg).

3.2.7. PAC-2 Analysis

The PAC-2 Analysis results are presented in **Table 12**. Examination of the total mass extracted shows a good correlation with the highest total concentrations of individual PAHs reported in **Table 11** (Section 3.2.6); CGO samples (106; 130) and HFO samples (008; 034; 134; 155) yielded the highest quantities of DMSO extractables. Interestingly one of the LBPN samples examined (Naphtha 2) also provided a high total mass extracted (25%) but the profile for this sample shows that the extractable material consisted only of 1-ring and 2-ring PACs. As indicated in Section 1.1, these lighter aromatic compounds are not quantitatively removed by the DMSO extraction employed in the PAC-2 procedure, so the actual quantity of total aromatics present in this sample is likely to be significantly higher than that shown in **Table 12**; PIONA-GC showed that this sample actually contained 99.7% (m/m) total aromatics.

Examination of the PAC-2 profiles reported in **Table 12** shows that the highest concentrations of heavier PACs (4-7 ring components) are found in HFO samples. Samples 008 and 034 contained the highest quantities of 4-7 ring PACs from all the samples examined using the PAC-2 procedure and examination of the results obtained from grouping the individual PAHs by ring number (**Table 11**) shows that the same two samples have the highest concentrations of these heavier PAHs. In summary, it therefore appears that, despite employing different measurement principles, there is an excellent correlation between the data obtained by the PAH Analysis and PAC-2 Analysis procedures.

3.2.8. Elemental Analysis

Table 13 shows the elemental analysis results for all samples examined in the 2015 AP. As indicated in the table, a good mass balance for all samples was obtained from the summation of the measured concentrations of carbon, hydrogen, sulphur, nitrogen and oxygen. Carbon to hydrogen ratios were calculated for all the samples analysed and these are presented in **Table 14**, grouped by category. Because some of the categories listed in **Table 14** contain very few samples, some caution is required when interpreting these data. However, as expected the highest carbon to hydrogen ratios were found for those substances with relatively high aromatic contents (Bitumen; CGO; HFO; RAE; UDAE) and the lowest for those substances with higher paraffinic contents (Foots Oil; Paraffin and Hydrocarbon Wax; Petrolatum; Slack Wax).

Relatively low concentrations ($\leq 0.7\%$ m/m) of nitrogen and oxygen were found in those samples where these elements were detected with the exception of two of the six substances which have been excluded from this report which contained 1.0% (m/m) and 8.0% (m/m) oxygen. Manufacture of the latter substance involves an oxidation process which is consistent with the high measured oxygen content. The highest concentrations of sulphur (>2% m/m) were found in samples of Bitumen (189; 192); RAE (185; 186); UDAE (089; 096A; 096B); HFO (020; 021; 025; 031; 078; 080); UATO (064); and TDAE (069).

Most samples contained no measurable concentrations of the minor elements investigated (As, Cd, Co, Cu, Fe, Mo, Ni, P, Pb, V, Zn, Cl, Hg, F) although some HFO and Bitumen samples contained elevated levels of Fe, Ni and V, which occur naturally in crude oil and are typically bound up in the heavier residual fractions. The maximum measured concentrations of these elements were 48 mg/kg (Fe); 54 mg/kg (Ni); and 207 mg/kg (V). Interestingly, one LBPN sample (027) was found to have a high fluorine content (89 mg/kg) which, given that this is a full-range alkylate sample, presumably resulted from traces of organofluorides produced during the manufacturing process in which hydrofluoric acid is used as an alkylation catalyst.

3.2.9. FIMS

The detailed results on all 61 fractions of OLBO and HRBO samples examined by FIMS are presented in **Table 15**. As described in Section 2.3.7, OLBOs (118; 119; 153; 154) and the HRBO (145) only consisted of saturated components and consequently these samples only yielded 5 fractions. However, the remaining 28 OLBO samples could be separated into aromatic and saturated components and therefore yielded 56 fractions. Owing to the relative complexity of the data presented in **Table 15** and to facilitate comparison between samples, the 3D images showing the type and carbon number range of the components present are shown separately in **Table 16**.

3.2.10. Spectroscopic Analysis

Appendix 11(a-d) shows UV, IR, ¹H-NMR and ¹³C-NMR spectra acquired on 4 samples, each from a different substance category and with diverse chemical compositions:

[Residual oils (petroleum)]

- Sample 043 Kerosine [Kerosine (petroleum)]
- Sample 129 HFO
 - Sample 145 HRBO [White mineral oil (petroleum)]
- Sample X

Despite their diverse compositions, the IR spectra of 043, 129 and 145 are very similar with the major peaks in the $2800 - 3100 \text{ cm}^{-1}$ region arising from various perturbations of the C-H bonds present. However, the IR spectrum of one substance (Sample X) which has been excluded from this report is significantly different exhibiting absorbance bands corresponding to C=O and C-O perturbations consistent with the high oxygen content found in this sample (see Section 3.2.8).

The UV spectra provide little useful information except that the spectrum of 145 was acquired on a neat sample of this substance whereas the other 3 samples all required high dilution with heptane (concentration range 13.8 - 234 mg/L) to produce on-scale spectra. This demonstrates the absence of aromatics and/or olefinic components in the HRBO sample because such components result in very strong absorbances at wavelengths below ~300 nm.

Examination of the ¹H-NMR spectra shows little difference in the region of main resonances (0.5 - 4.0 ppm) except that in 145 there are no resonances in the 2.0 - 4.0 ppm region from protons on groups adjacent to an aromatic ring, which indicates the absence of aromatics in this sample. This observation is vindicated by the absence of aromatic proton resonances in the 6.7 - 8.0 ppm region.

The ¹³C-NMR spectra basically endorse the findings from the ¹H-NMR spectra because no resonances arising from aromatic carbons could be detected in the 120 - 150 ppm region for the HRBO sample (145).

In summary, spectroscopic analysis of petroleum UVCB substances can provide evidence on the composition of those substances with very specific chemical properties (e.g. absence of aromatic components; presence of large concentration of carboxylic acids). However, the great majority of PS cannot be effectively differentiated from each other by UV, IR, ¹H-NMR or ¹³C-NMR spectroscopic analysis, and the results from the 2015 AP endorse the previously expressed view from Concawe ⁽¹⁾ that spectroscopic analysis provides no additional information to that obtained by the other techniques recommended to member companies for generating compositional information on their products ^(2, 3).

3.2.11. PCA Analysis

Table 17 provides a summary of the PCA results for the OLBO, TDAE, UDAE, Foots Oil, Petrolatum, RAE and HRBO samples examined in the 2015 AP. As indicated, some samples were not amenable to the IP 346 ⁽³⁵⁾ method because they could not be completely dissolved in cyclohexane which is used to solubilise the samples prior to extraction of the PAC components with DMSO.

The great majority of OLBOs had low PCA contents (<1% m/m) which is to be expected given that the product specification for finished oils requires the PCA content to be <3% (m/m) when measured by IP 346. The highest PCA content for OLBOs (5.1% m/m) was found in OLBO 1; five other samples (074; 075; 081; OLBO 6; 140) had PCA contents in the 1-2% (m/m) range. Not surprisingly, all the aromatic extracts (TDAE, UDAE, RAE) had relatively high PCA contents with the UDAE samples (089; 096A; 096B) producing the highest values (range 10.5 - 28.5% (m/m)).

Comparison of the PCA results in **Table 17** with the PAC-2 total mass extracted results reported in **Table 12** shows a good correlation between these data sets although the values reported using the PAC-2 procedure are generally ~50% of those obtained with the IP 346 method. This is not surprising given the slight differences in these two procedures and knowledge gained during the development and routine use of the IP 346 method which has shown that strict control of laboratory procedures is required to obtain reproducible results.

3.2.12. HPLC

The total quantities of mono-, di- and tri+ aromatics present in the LBPN, Kerosine, SRGO, OGO, VHGO, CGO, Mk1 Diesel Fuel and OLBO samples analysed by HPLC (IP 548) are presented in **Table 18**. As shown, some of the samples which were submitted for analysis were not amenable to the method, but subsequent analysis of these samples by GCxGC indicated that their chemical composition was somewhat different from the composition of the diesel fuels and blending components for which IP 548 was originally developed.

Not surprisingly, mono-aromatic components accounted for the great majority of aromatics present in the LBPN and Kerosine samples analysed. Only the heavier LBPN samples were analysed by HPLC and the substance descriptions of those samples (Naphtha 2; 054; 101; 146) which contained >50% (m/m) total aromatics show that these samples are expected to have a high aromatic content. The highest concentration of total aromatics found in the Kerosine samples was 23.1% (m/m) for Kero 4; and the lowest was 0.2% (m/m) for Kero 1 which is a hydrotreated, dearomatized substance. In general, the gas oil (SRGO, OGO, VHGO, CGO) samples had the highest concentrations of poly-aromatic hydrocarbons (di- and tri+ aromatics) and, in contrast with all the samples from the other substance categories which contained $\leq 0.4\%$ (m/m) tri+ aromatics, all but one of the gas oil samples had much higher tri+ aromatic contents. As described in Section 2.3.7, two OLBO samples (118: 119) only consisted of saturated components which is endorsed by the HPLC results presented in **Table 18** which show very low aromatic contents for these two samples. As expected, the Mk1 Diesel Fuel (Sample 059) only contained 4.2% (m/m) total aromatics.

Table 19 presents the results obtained by HPLC (IP 548) together with the GCxGC results from the corresponding samples obtained during the 2013 and 2015 Analytical Programs. Because GCxGC gives a higher level of granularity for chemical functionalities than the IP 548 procedure, it was necessary to aggregate some of the GCxGC data (e.g. mono-aromatics + naphthenic mono-aromatics) to obtain equivalent data (e.g. mono-aromatics) to those generated by HPLC. Good agreement between the HPLC and GCxGC results was obtained for the great majority of samples, especially considering the vast difference in the principles of the two procedures. The only major discrepancy was found for Sample 074 (OLBO), which is unexplained therefore requires further investigation. The two OLBO samples referred to above (118; 119) were found to contain low levels of aromatics by GCxGC but, as indicated in **Tables 18** and **19**, the mono-aromatic results for the HPLC analysis fall outside the precision range for this procedure and the refractive index detection system employed in the IP 548 method is not particularly good for low concentration measurements.

3.2.13. TLC-FID

Table 20 shows the quantities of saturates, aromatics, resins and asphaltenes found in the Bitumen, Oxidised Asphalt, HFO, Paraffin and Hydrocarbon Wax, UATO, TDAE, UDAE, Foots Oils, Petrolatum, Slack Wax, RAE and VHGO samples analysed by TLC-FID (IP 469). Although this technique is very good at quantifying the basic chemical functionalities (saturates, aromatics, resins, asphaltenes) in very complex PS, strict control of the experimental conditions and especially the matching and uniform conditioning of the TLC silica rods is essential to achieve good results. The analytical laboratory therefore employed a system standard in every batch of samples analysed and the data presented in **Table 20** illustrate the relatively good reproducibility of the system standard results obtained. Moreover and in accordance with IP 469, samples were analysed in triplicate and the results presented in

Table 20 are the mean values obtained from the three analyses carried out on each sample.

3.2.14. LCC

The concentrations of saturates, aromatics and polars measured in the Bitumen, Oxidised Asphalt, HFO, Paraffin and Hydrocarbon Wax, UATO, TDAE, UDAE, Foots Oil, Petrolatum, Slack Wax, RAE, OLBO, HRBO, OGO and VHGO samples analysed by LCC (ASTM D2007) are presented in **Table 21**. As shown, good recoveries (> 98% m/m) were obtained for the great majority of samples; Sample 189 (Bitumen) and Sample 193 (Oxidised Asphalt) gave recoveries of 90.3% (m/m) and 93.2% (m/m) respectively but both these samples contained high concentrations of asphaltenes which were removed by precipitation prior to the LCC procedure so this could account for the lower recoveries obtained for these two samples.

As shown in **Table 22**, the LCC results are in relatively good agreement with the TLC-FID results for those samples which were analysed by both of these techniques.

3.2.15. Viscosity

Viscosity data obtained on the OLBO, UATO, HFO and VHGO samples analysed are shown in **Table 23** together with the viscosity values given in the formal substance descriptions. In most cases the measured viscosity is consistent with the quoted value although, as highlighted in **Table 23**, significant discrepancies were found for Samples OLBO 1, 118, 119, 147, 148, 151.

4. CONCLUSIONS

4.1. COMPARISON OF RESULTS FROM 2013 AND 2015 ANALYTICAL PROGRAMS

Many of the SRGO, OGO, VHGO and RAE samples which had been examined in the 2013 AP and then transferred to the 2015 AP were re-analysed by SIMDIS-GC, HPLC, and TLC-FID using different analytical laboratories, and by PAH and PAC-2 analysis using the same laboratories. It was therefore possible to compare the results generated on the same samples before and after a two-year storage period.

The boiling point distributions obtained by SIMDIS-GC from both studies showed good agreement despite the analyses having been carried out by different laboratories using different SIMDIS-GC software systems and on samples which had been stored for approximately two years. The mono-, di- and tri+ aromatic contents obtained by HPLC in the 2015 AP also showed good overall agreement with the results generated on the same samples in the 2013 AP. Good agreement was also obtained between the TLC-FID results for the two RAE substances examined in both programs.

Although the suite of PAHs examined in the 2015 AP was slightly larger than in the 2013 AP, comparison of the results from both studies for the corresponding PAHs in the same samples showed very good agreement, especially considering that this involved the trace level analysis of individual chemical components in complex sample matrices. Good agreement was also obtained between the PAC-2 analysis results from both programs.

In summary, it can therefore be concluded that the integrity of those samples examined was maintained over a two-year storage period and that the analytical procedures employed exhibited good reproducibility.

4.2. RESULTS FROM 2015 ANALYTICAL PROGRAM

The great majority (93%) of samples with a defined carbon number range in the formal substance description were found to contain $\ge 80\%$ (m/m) of components within this range, and consequently only a small number of samples did not proceed to the more detailed second phase analysis, which involved a variety of analytical techniques as listed in Section 1.2.2.

Although only substances containing components in the ~C8-C30 range can be comprehensively examined by GCxGC, making it best suited to the analysis of middle-distillate substances such as kerosines and the lighter gas oils, this technique was applied to many other types of substances in the 2015 AP including HFO, OLBO, Paraffin and Hydrocarbon Wax, UATO, TDAE, UDAE, Foots Oil, Petrolatum, Slack Wax, HRBO and Oxidised Asphalt. Clearly the proportion of each sample which was amenable to GCxGC analysis varied depending on the boiling range of the material (e.g. 6.3% (m/m) for Oxidised Asphalt to 100% (m/m) for Kerosine), but the GCxGC recoveries obtained were in very good agreement with the corresponding SIMDIS-GC recoveries for <C31 components throughout the range of substances examined. The GCxGC results were also consistent with the anticipated composition of each sample analysed: Paraffin and Hydrocarbon Wax and Slack Wax samples contained a high proportion of n-paraffins; no significant concentrations of aromatic components were found in the HRBO sample; and the non-hydrotreated, catalytically cracked substances contained high concentrations of aromatic hydrocarbons. Results obtained on the great majority of samples which were amenable to both GCxGC analysis and HPLC measurement of mono-, di- and tri+ aromatics showed good agreement, especially given the vast difference in measurement principles between these two procedures.

For the LBPN samples, DHA-GC results were grouped by summing the individual concentrations of n-paraffins, iso-paraffins, olefins, naphthenes and aromatics present to provide data in an equivalent format to that generated by the PIONA-GC technique. Comparison of these results with those obtained by direct analysis of the same samples using PIONA-GC showed good agreement between the two sets of data.

Not surprisingly, virtually all substances in the Paraffin and Hydrocarbon Waxes, Slack Waxes, Petrolatums and OLBO categories had very low total concentrations of the individual PAHs measured whereas the highest total concentrations were found in CGO and HFO samples. Samples which yielded the highest quantities of DMSO extractables by PAC-2 Analysis were also found to contain the highest total concentrations of individual PAHs showing that, despite employing different measurement principles, there is a good correlation between data obtained by the PAH Analysis and PAC-2 Analysis procedures.

Elemental analysis confirmed that the highest carbon to hydrogen ratios are found in those substances with relatively high aromatic contents (Bitumens; CGO; HFO; RAE; UDAE) and the lowest in those substances with higher paraffinic contents (Foots Oils; Paraffin and Hydrocarbon Waxes; Petrolatums; Slack Waxes). Most samples contained no measurable concentrations of the minor elements investigated (As, Cd, Co, Cu, Fe, Mo, Ni, P, Pb, V, Zn, Cl, Hg, F) although some HFO and Bitumen samples contained elevated levels of Fe, Ni and V, which occur naturally in crude oil and are typically bound up in the heavier residual fractions.

LCC results were in relatively good agreement with the TLC-FID results for those samples which were analysed by both techniques.

Spectroscopic examination of all samples in the 2015 AP showed that useful compositional information was only provided for two substances: (i) to show the absence of aromatic components; (ii) to show the presence of a large concentration of carboxylic acids. The great majority of PS cannot be effectively differentiated from each other by UV, IR, ¹H-NMR or ¹³C-NMR spectroscopic analysis, which endorses the SIG view that spectral data generally provide no useful additional information for substance identification to that obtained using chromatographic techniques.

In summary, it can be concluded that with few exceptions the chemical compositions of the samples analysed were consistent with their formal substance descriptions, and that the results generated for the same measurands using different analytical techniques showed good agreement.

5. GLOSSARY

CGO	Cracked Gas Oils
HFO	Heavy Fuel Oils
HRBO	Highly Refined Base Oils
LBPN	Low Boiling Point Naphthas
OGO	Other Gas Oils
OLBO	Other Lubricant Base Oils
RAE	Residual Aromatic Extracts
SRGO	Straight-Run Gas Oils
TDAE	Treated Distillate Aromatic Extracts
UATO	Unrefined / Acid Treated Oils
UDAE	Untreated Distillate Aromatic Extracts
VHGO	Vacuum Gas Oils, Hydrocracked Gas Oils and Distillate Fuels
AP	Analytical Program
DHA-GC	Detailed Hydrocarbon Analysis - Gas Chromatography
ECHA	European Chemicals Agency
FIMS	Field Ionisation Mass Spectrometry
GCxGC	Comprehensive Two-Dimensional Gas Chromatography
GC-MS	Gas Chromatography - Mass Spectrometry
HPLC	High Performance Liquid Chromatography
IR	Infra-Red
IUCLID	International Uniform Chemical Information Database
LCC	Liquid Column Chromatography
NMR	Nuclear Magnetic Resonance
PAC	Poly-cyclic Aromatic Carbons
PAH	Poly-Aromatic Hydrocarbons
PCA	Poly-Cyclic Aromatics
PIONA-GC	Paraffin, Iso-paraffin, Olefin, Naphthene, Aromatic - Gas
	Chromatography
PS	Petroleum Substance(s)
REACH	Registration, Evaluation and Authorisation of Chemicals
RfP	Request for Proposal
SIG	Substance Identification Group
SIMDIS-GC	Simulated Distillation - Gas Chromatography
TLC-FID	Thin Layer Chromatography - Flame Ionisation Detection
UV	Ultra-Violet
UVCB	Unknown or Variable composition, Complex reaction products or Biological materials

6. ACKNOWLEDGEMENTS

The Concawe Substance Identity Group thanks all companies that kindly provided samples for the 2015 Analytical Program.

7. **REFERENCES**

- 1. Concawe Report No. 7/12 REACH - Analytical Characterisation of Petroleum UVCB Substances
- 2. Concawe Note December 2010 Guidance on Analytical Requirements for Petroleum UVCB Substances - Completion of REACH Registration Dossiers
- 3. Concawe Note May 2014 Guidance on Reporting Analytical Information for Petroleum UVCB Substances in REACH Registration Dossiers
- 4. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 1
- 5. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 2
- 6. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 3
- 7. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 31
- 8. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 4
- 9. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 4I
- 10. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Straight-Run Gas Oils - Sample CON 5
- 11. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Other Gas Oils - Sample CON 6
- 12. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Other Gas Oils - Sample CON 7
- 13. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Other Gas Oils - Sample CON 8
- 14. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Other Gas Oils - Sample CON 9
- 15. Shell Global Solutions Analysis Report December 2013 Analytical Characterisation of CONCAWE Other Gas Oils - Sample CON 11
- Shell Global Solutions Analysis Report December 2013
 Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and Distillate Fuels – Sample CON 12

17.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 13
18.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 14
19.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 15
20.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 16(i)
21.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 16(ii)
22.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 16(iii)
23.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 17
24.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 18
25.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 19
26.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Vacuum and Hydrocracked Gas Oils and
	Distillate Fuels – Sample CON 20
27.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Bitumens – Sample CON 21
28.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Bitumens – Sample CON 22
29.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Bitumens – Sample CON 23
30.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Bitumens – Sample CON 24
31.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Bitumens – Sample CON 25
32.	Shell Global Solutions Analysis Report – December 2013
	Analytical Characterisation of CONCAWE Residual Aromatic Extracts – Sample CON
	26

33.	Shell Global Solutions Analysis Report – December 2013 Analytical Characterisation of CONCAWE Residual Aromatic Extracts – Sample CON
	27
34.	Polynuclear Aromatic Hydrocarbons: A Decade of Progress (1985)
	Edited by M. Cooke and A.J. Dennis (Batelle Press)
	Estimation of mutagenic and dermal carcinogenic activities of petroleum fractions based on polynuclear aromatic hydrocarbon content
	T.A. Roy, S.W. Johnson, G.R. Blackburn, R.A. Deitch, C.A. Schreiner and C.M. Mackerer
35.	IP 346 – Energy Institute
	Determination of polycyclic aromatics in unused lubricating base oils and
	asphaltene free petroleum fractions – Dimethyl sulfoxide extraction refractive index
	method
36.	ASTM D86
	Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure
37.	ASTM D7096
	Standard Test Method for Determination of the Boiling Range Distribution of
	Gasoline by Wide-Bore Capillary Gas Chromatography
38.	ASTM D2887
	Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas
	Chromatography
39.	EN 15199-2
	Petroleum products – Determination of boiling range distribution by gas
	chromatography method – Part 2: Heavy distillates and residual fuels
40.	ASTM D6730
	Standard Test Method for Determination of Individual Components in Spark Ignition
	Engine Fuels by 100–Metre Capillary (with Precolumn) High-Resolution Gas
	Chromatography
41.	EN 22854
	Liquid petroleum products – Determination of hydrocarbon types and oxygenates in
	automotive-motor gasoline and in ethanol (E85) automotive fuel –
	Multidimensional gas chromatography method
42.	Chemosphere 1997, 34(9), 2213-2226
	Atmospheric emission of polycyclic aromatic hydrocarbons in sampling areas of the
	German environmental specimen bank. Method for the precise measurement of
	gaseous and particle- associated polycyclic aromatic hydrocarbons in the sub-
	nanogram range using deuterated internal standards
43.	ASTM D5291
	Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and
	Nitrogen in Petroleum Products and Lubricants
44.	ASTM D5453
	Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons,

	Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet
15	
43.	Standard Test Method for Chlorine in Aromatics by Monochromatic Wavelength
	Disnersive X-ray Eluorescence Snectrometry
46	IP 594 - Energy Institute
40.	Determination of mercury in hurner fuels derived from waste mineral oils –
	Combustion amalgamation cold vanour atomic absorption spectrometry method
47.	ASTM D7539
	Standard Test Method for Total Fluorine. Chlorine and Sulfur in Aromatic
	Hydrocarbons and Their Mixtures by Oxidative Pyrohydrolytic Combustion followed
	by Ion Chromatography Detection (Combustion Ion Chromatography-CIC)
48.	IP 368 – Energy Institute
	Determination of hydrocarbon types in lubricating oil basestocks – Preparative high
	performance liquid chromatography method
49.	IP 480 – Energy Institute
	Determination of boiling range distribution by gas chromatography method - Part
	1: Middle distillates and lubricating base oils
50.	IP 548 – Energy Institute
	Determination of aromatic hydrocarbon types in middle distillates - High
	performance liquid chromatography method with refractive index detection
51.	IP 469 – Energy Institute
	Determination of saturated, aromatic and polar compounds in petroleum products
	by thin layer chromatography and flame ionization detection
52.	ASTM D2007
	Standard Test Method for Characteristic Groups in Rubber Extender and Processing
	Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption
	Chromatographic Method
53.	ASTM D445
	Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids
	(and Calculation of Dynamic Viscosity)
54.	ASIM D2161
	Standard Practice for Conversion of Kinematic Viscosity to Saybolt Universal
	Viscosity or to Saybolt Furol Viscosity

Figure 1 - Decision Tree employed in First Phase of 2015 Analytical Program

Figure 2 - Relationship between volatility and carbon number for different hydrocarbon functionalities

	CONCAWE 2013 Analytical Program - Gas oils											
Sample No.	Cross-Reference to 2015 Analytical Program	Category	Substance	CAS No.	EINECS No.	CAS Description						
CON 1	168	SRGO	Gas oils (petroleum), straight-run	64741-43-1	265-043-1	A complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205° C to 400° C (401° F to 752° F).						
CON 2	169	SRGO	Distillates (petroleum), straight-run middle	64741-44-2	265-044-7	A complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C20 and boiling in the range of 205°C to 345 °C (401 °F to 653 °F).						
CON 3 (Substitute Sample)	170	SRGO	Distillates (petroleum), full-range straight-run middle	68814-87-9	272-341-5	A complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C9 through C25 and boiling in the range of approximately 150°C to 400°C (320°F to 752°F).						
CON 31 (Lead Registrant Sample)		SRGO	Distillates (petroleum), full-range straight-run middle	68814-87-9	272-341-5	A complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C9 through C25 and boiling in the range of approximately 150°C to 400°C (320°F to 752°F).						
CON 4 (Substitute Sample)	171	SRGO	Distillates (petroleum), heavy straight-run	68915-96-8	272-817-2	A complex combination of hydrocarbons produced by the atmospheric distillation of crude oil. It boils in the range of approximately 288°C to 471°C (550°F to 880°F).						
CON 41 (Lead Registrant Sample)		SRGO	Distillates (petroleum), heavy straight-run	68915-96-8	272-817-2	A complex combination of hydrocarbons produced by the atmospheric distillation of crude oil. It boils in the range of approximately 288°C to 471°C (550°F to 880°F).						
CON 5	172	SRGO	Gas oils (petroleum), straight-run, high-boiling	68915-97-9	272-818-8	A complex combination of hydrocarbons produced by the atmospheric distillation of crude oil. It boils in the range of approximately 282°C to 349°C (540°F to 660°F).						
CON 6		OGO	Distillates (petroleum), sweetened middle	64741-86-2	265-088-7	A complex combination of hydrocarbons obtained by subjecting a petroleum distillate to a sweetening process to convert mercaptans or to remove acidic impurities. It consists of hydrocarbons having carbon numbers predominantly in the range of C9 through C20 and boiling in the range of approximately 150°C to 345°C (302°F to 653°F).						

Table 1 - Substances Investigated in the 2013 Analytical Program

CON 7	173	OGO	Distillates (petroleum), hydrotreated middle	64742-46-7	265-148-2	A complex combination of hydrocarbons obtained by treating a petroleum fraction with hydrogen in the presence of a catalyst. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205°C to 400°C (401°F to 752°F).
CON 8		OGO	Gas oils (petroleum), hydrodesulfurized	64742-79-6	265-182-8	A complex combination of hydrocarbons obtained from a petroleum stock by treating with hydrogen to convert organic sulfur to hydrogen sulfide which is removed. It consists predominantly of hydrocarbons having carbon numbers predominantly in the range of C13 through C25 and boiling in the range of approximately 230°C to 400°C (446°F to 752°F).
CON 9	174	OGO	Distillates (petroleum), hydrodesulfurized middle	64742-80-9	265-183-3	A complex combination of hydrocarbons obtained from a petroleum stock by treating with hydrogen to convert organic sulfur to hydrogen sulfide which is removed. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205°C to 400°C (401°F to 752°F).
CON 10		OGO	Alkanes, C12-26-branched and linear	90622-53-0	292-454-3	No EC number description available in ESIS.
CON 11		OGO	Gas oils, paraffinic	93924-33-5	300-227-8	A distillate obtained from the redistillation of a complex combination of hydrocarbons obtained by the distillation of the effluents from a severe catalytic hydrotreatment of paraffins. It boils in the range of approximately 190°C to 330°C (374°F to 594°F).
CON 12	175	VHGO	Condensates (petroleum), vacuum tower	64741-49-7	265-049-4	A complex combination of hydrocarbons produced as the lowest boiling stream in the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205°C to 400°C (401°F to 752°F).
CON 12 CON 13	175 176	VHGO VHGO	Condensates (petroleum), vacuum tower Gas oils (petroleum), light vacuum	64741-49-7 64741-58-8	265-049-4 265-059-9	A complex combination of hydrocarbons produced as the lowest boiling stream in the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205°C to 400°C (401°F to 752°F). A complex combination of hydrocarbons produced by the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C30 and boiling in the range of approximately 230°C to 450°C (446°F to 842°F).
CON 12 CON 13 CON 14	175 176 177	VHGO VHGO VHGO	Condensates (petroleum), vacuum tower Gas oils (petroleum), light vacuum Distillates (petroleum), light hydrocracked	64741-49-7 64741-58-8 64741-77-1	265-049-4 265-059-9 265-078-2	A complex combination of hydrocarbons produced as the lowest boiling stream in the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205°C to 400°C (401°F to 752°F). A complex combination of hydrocarbons produced by the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C13 through C30 and boiling in the range of approximately 230°C to 450°C (446°F to 842°F). A complex combination of hydrocarbons from distillation of the products from a hydrocracking process. It consists predominantly of saturated hydrocarbons having carbon numbers predominantly in the range of C10 through C18, and boiling in the range of approximately 160°C to 320°C (320°F to 608°F).
CON 12 CON 13 CON 14 CON 15	175 176 177 178	VHGO VHGO VHGO VHGO	Condensates (petroleum), vacuum tower Gas oils (petroleum), light vacuum Distillates (petroleum), light hydrocracked Gas oils (petroleum), hydrodesulfurized light vacuum	64741-49-7 64741-58-8 64741-77-1 64742-87-6	265-049-4 265-059-9 265-078-2 265-190-1	A complex combination of hydrocarbons produced as the lowest boiling stream in the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C11 through C25 and boiling in the range of approximately 205°C to 400°C (401°F to 752°F). A complex combination of hydrocarbons produced by the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C13 through C30 and boiling in the range of approximately 230°C to 450°C (446°F to 842°F). A complex combination of hydrocarbons from distillation of the products from a hydrocracking process. It consists predominantly of saturated hydrocarbons having carbon numbers predominantly in the range of C10 through C18, and boiling in the range of approximately 160°C to 320°C (320°F to 608°F). A complex combination of hydrocarbons obtained from a catalytic hydrodesulfurization process. It consists of hydrocarbons having carbon numbers predominantly in the range of C10 through C18, and boiling in the range of C13 through C30 and boiling in the range of C13 through C30 and boiling in the range of C13 through C30 and boiling in the range of C13 through C30 and boiling in the range of C13 through C30 and boiling in the range of C13 through C30 and boiling in the range of Approximately 230°C to 450°C (446°F to 842°F).

CON 16(ii)	180	VHGO	Fuels, diesel	68334-30-5	269-822-7	A complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C9 through C20 and boiling in the range of approximately 163°C to 357°C (325°F to 675°F).
CON 16(iii)		VHGO	Fuels, diesel	68334-30-5	269-822-7	A complex combination of hydrocarbons produced by the distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly in the range of C9 through C20 and boiling in the range of approximately 163°C to 357°C (325°F to 675°F).
CON 17	181	VHGO	Fuel oil, no. 2	68476-30-2	270-671-4	A distillate oil having a minimum viscosity of 32.6 SUS at 37.7°C (100°F) to a maximum of 37.9 SUS at 37.7°C (100°F).
CON 18	182	VHGO	Fuel oil, no. 4	68476-31-3	270-673-5	A distillate oil having a minimum viscosity of 45 SUS at 37.7°C (100°F) to a maximum of 125 SUS at 37.7°C (100°F).
CON 19	183	VHGO	Fuels, diesel, no. 2	68476-34-6	270-676-1	A distillate oil having a minimum viscosity of 32.6 SUS at 37.7°C (100°F) to a maximum of 40.1 SUS at 37.7°C (100°F).
CON 20	184	VHGO	Gas oils (petroleum), hydrotreated light vacuum	92045-24-4	295-407-5	A complex combination of hydrocarbons that is obtained by treatment of light vacuum petroleum gas oils with hydrogen in the presence of a catalyst. It consists of hydrocarbons having carbon numbers predominantly in the range of C13 through C30 and boiling in the range of approximately 230°C to 450°C (446°F to 842°F).

Notes

1. Sample CON 2 was initially classed as "Distillates (petroleum), straight-run middle" (CAS No. 64741-44-2) but following analysis was re-classified by Concawe as "Distillates (petroleum), full-range straight-run middle" (CAS No. 68814-87-9).

2. Sample CON 5 was initially classed as "Gas oils (petroleum), straight-run, high-boiling" (CAS No. 68915-97-9) but following analysis was re-classified by Concawe as "Gas oils (petroleum), straight-run" (CAS No. 64741-43-1).

3. Only a small volume (~500 mL) of Sample CON 10 was supplied, which was insufficient for any subsequent testing program, so this sample was not characterised.

- 4. Three samples of CON 16 were supplied, all classified as "Fuels, diesel" (CAS No. 68334-30-5). The following information was supplied with the samples:
 - CON 16(i) Gasoil Heating DIN contains 32% straight-run kerosine and 68% of a desulfurised mixture (roughly 50% straight-run kerosine, 25% light straight-run gasoil and 25% light vacuum gasoil).
 - CON 16(ii) Gasoil Heating 50 ppm contains 80% straight-run kerosine and 20% straight-run light gasoil. This sample is also representative for diesel fuel (except for the sulphur level and it does not contain additives).
 - CON 16(iii) Diesel Oil. This is representative for marine gasoil (DMA) and contains 70% straight-run material and 30% LCO. This sample is representative for just a smaller portion of the products that are covered by CAS No. 68334-30-5. It should only be used in proportion.

	CONCAWE 2013 Analytical Program - Bitumens											
Sample No.	Cross-Reference to 2015 Analytical Program	Category	Substance	CAS No.	EINECS No.	CAS Description						
CON 21		Bitumen	Asphalt	8052-42-4	232-490-9	A very complex combination of high molecular weight organic compounds containing a relatively high proportion of hydrocarbons having carbon numbers predominantly greater than C25 with high carbon-to-hydrogen ratios. It also contains small amounts of various metals such as nickel, iron, or vanadium. It is obtained as the non-volatile residue from distillation of crude oil or by separation as the raffinate from a residual oil in a deasphalting or decarbonization process.						
CON 22		Bitumen	Residues (petroleum), vacuum	64741-56-6	265-057-8	A complex residuum from the vacuum distillation of the residuum from atmospheric distillation of crude oil. It consists of hydrocarbons having carbon numbers predominantly greater than C34 and boiling above approximately 495°C (923°F).						
CON 23		Bitumen	Residues (petroleum), thermal cracked vacuum	92062-05-0	295-518-9	A complex combination of hydrocarbons obtained from the vacuum distillation of the products from a thermal cracking process. It consists predominantly of hydrocarbons having carbon numbers predominantly greater than C34 and boiling above approximately 495°C (923°F).						
CON 24		Bitumen	Residues (petroleum), distn. residue hydrogenation	100684-39-7	309-712-9	A complex combination of hydrocarbons obtained as a residue from the distillation of crude oil under vacuum. It consists predominantly of hydrocarbons having carbon numbers predominantly in the range above C50 and boiling in the range above approximately 360°C (680°F).						
CON 25		Bitumen	Residues (petroleum), vacuum distn. residue hydrogenation	100684-40-0	309-713-4	A complex combination of hydrocarbons obtained as a residue from the distillation of crude oil under vacuum. It consists predominantly of hydrocarbons having carbon numbers predominantly in the range above C50 and boiling in the range above approximately 500°C (932°F).						

CONCAWE 2013 Analytical Program - Residual Aromatic Extracts											
Sample No.	Cross-Reference to 2015 Analytical Program	Category	Substance	CAS No.	EINECS No.	CAS Description					
CON 26	185	RÆ	Extracts (petroleum), residual oil solvent	64742-10-5	265-110-5	A complex combination of hydrocarbons obtained as the extract from a solvent extraction process. It consists predominantly of aromatic hydrocarbons having carbon numbers predominantly higher than C25.					
CON 27	186	RÆ	Extracts (petroleum), deasphalted vacuum residue solvent	91995-70-9	295-332-8	A complex combination of hydrocarbons obtained by solvent extraction of a vacuum deasphalted residue. It consists predominantly of aromatic hydrocarbons having carbon numbers predominantly greater than C30. This stream contains more than 5 wt. % of 4- to 6-membered condensed ring aromatic hydrocarbons.					

Table 2 Detailed Inventory of Substances Investigated in the 2015 Analytical Program (minus the excluded substances)

Table 3 - Summary of Substances Investigated in the 2015 Analytical Program (including the excluded substances)

Substance Category	Samples	CAS numbers	EC numbers
Bitumen	4	4	4
Cracked Gas Oils	8	8	8
Foots Oils	3	3	3
Heavy Fuel Oils	27	27	27
Highly Refined Base Oils	1	1	1
Kerosines	10	9	9
Low Boiling Point Naphthas	87	69	69
MK1 Diesel Fuel	1	see note	1
Other Gas Oils	4	3	3
Other Lubricant Base Oils	31	28	28
Oxidised Asphalt	2	1	1
Paraffin and Hydrocarbon Waxes	7	7	7
Petrolatums	4	4	4
Residual Aromatic Extracts	2	2	2
Slack Waxes	4	3	3
Straight-Run Gas Oils	6	4	4
Treated Distillate Aromatic Extracts	1	1	1
Unrefined / Acid Treated Oils	5	2	2
Untreated Distillate Aromatic Extracts	4	3	3
Vacuum Gas Oils, Hydrocracked Gas Oils and Distillate Fuels	10	9	9
Total	221	188	189

<u>Note</u>

Sample 049 (Kerosine) and Sample 059 (MK1 Diesel Fuel) have the same CAS number but different EC numbers.

Table 4 - Summary of Physical Distillation Results

Table 5 - Summary of SIMDIS-GC Results

Specified range	Total number of carbon numbers ⁽¹⁾	Percentage distribution per carbon number (2)	10% of total number of carbon numbers	±10% of specified range	20% of total number of carbon numbers	±20% of specified range
C4-C5	2	50%	0.2	C4-C5	0.4	C4-C5
C5-C6	2	50%	0.2	C5-C6	0.4	C5-C6
C6-C7	2	50%	0.2	C6-C7	0.4	C6-C7
C7-C8	2	50%	0.2	C7-C8	0.4	C7-C8
C4-C6	3	33%	0.3	C4-C6	0.6	C3/5-C5/7
C5-C7	3	33%	0.3	C5-C7	0.6	C4/6-C6/8
C6-C8	3	33%	0.3	C6-C8	0.6	C5/7-C7/9
C8-C10	3	33%	0.3	C8-C10	0.6	C7/9-C9/11
C3-C6	4	25%	0.4	C3-C6	0.8	C2/4-C5/7
C5-C8	4	25%	0.4	C5-C8	0.8	C4/6-C7/9
C6-C9	4	25%	0.4	C6-C9	0.8	C5/7-C8/10
C7-C10	4	25%	0.4	C7-C10	0.8	C6/8-C9/11
C9-C12	4	25%	0.4	C9-C12	0.8	C8/10-C11/13
C4-C8	5	20%	0.5	C3/C5-C7/C9	1.0	C3/5-C7/9
C5-C9	5	20%	0.5	C4/6-C8/10	1.0	C4/6-C8/10
C6-C10	5	20%	0.5	C5/7-C9/11	1.0	C5/7-C9/11
C2-C7	6	17%	0.6	C1/3-C6/8	1.2	C1/3-C6/8
C4-C9	6	17%	0.6	C3/5-C8/10	1.2	C3/5-C8/10
C5-C10	6	17%	0.6	C4/6-C9/11	1.2	C4/6-C9/11
C6-C11	6	17%	0.6	C5/7-C10/12	1.2	C5/7-C10/12

Table 6 - Carbon Number Ranges in Petroleum Substance Descriptions

Specified range	Total number of carbon numbers ⁽¹⁾	Percentage distribution per carbon number (2)	10% of total number of carbon numbers	±10% of specified range	20% of total number of carbon numbers	±20% of specified range
C7-C12	6	17%	0.6	C6/8-C11/13	1.2	C6/8-C11/13
C11-16	6	17%	0.6	C10/12-C15/17	1.2	C10/12-C15/17
C4-C10	7	14%	0.7	C3/5-C9/11	1.4	C3/5-C9/11
C5-C11	7	14%	0.7	C4/6-C10/12	1.4	C4/6-C10/12
C6-C12	7	14%	0.7	C5/7-C11/13	1.4	C5/7-C11/13
C4-C11	8	13%	0.8	C3/5-C10/12	1.6	C2/6-C9/13
C5-C12	8	13%	0.8	C4/6-C11/13	1.6	C3/7-C10/14
C6-C13	8	13%	0.8	C5/7-C12/14	1.6	C4/8-C11/15
C9-C16	8	13%	0.8	C8/10-C15/17	1.6	C7/11-C14/18
C3-C11	9	11%	0.9	C2/4-C10/12	1.8	C1/5-C9/13
C4-C12	9	11%	0.9	C3/5-C11/13	1.8	C2/6-C10/14
C10-C18	9	11%	0.9	C9/11-C17/19	1.8	C8/12-C16/20
C21-C29	9	11%	0.9	C20/22-C28/30	1.8	C19/23-C27/31
C11-C20	10	10%	1.0	C10/12-C19/21	2.0	C9/13-C18/22
C12-C21	10	10%	1.0	C11/13-C20/22	2.0	C10/14-C19/23
C4-C15	12	8%	1.2	C3/5-C14/16	2.4	C2/6-C13/17
C9-C20	12	8%	1.2	C8/10-C19-21	2.4	C7/11-C18/22
C10-C22	13	8%	1.3	C9/11-C21/23	2.6	C7/13-C19/25
C13-C25	13	8%	1.3	C12/14-C24/26	2.6	C10/16-C22/28
C17-C30	14	7%	1.4	C16/18-C29/31	2.8	C14/20-C27/33
C11-C25	15	7%	1.5	C9/13-C23/27	3.0	C8/14-C22/28

Specified range	Total number of carbon numbers ⁽¹⁾	Percentage distribution per carbon number (2)	10% of total number of carbon numbers	±10% of specified range	20% of total number of carbon numbers	±20% of specified range
C9-C24	16	6%	1.6	C7/11-C22/26	3.2	C6/12-C21/27
C10-C25	16	6 %	1.6	C8/12-C23/27	3.2	C7/13-C22/28
C15-C30	16	6%	1.6	C13/17-C28/32	3.2	C12/18-C27/33
C9-C25	17	6%	1.7	C7/11-C23/27	3.4	C6/12-C22/28
C13-C30	18	6%	1.8	C11/15-C28/32	3.6	C9/17-C26/34
C2-C20	19	5%	1.9	C0/4-C18/22	3.8	C0/6-C16/24
C11-C30	20	5%	2.0	C9/13-C28/32	4.0	C7/15-C26/34
C15-C35	21	5%	2.1	C13/17-C33/37	4.2	C11/19-C31/39
C15-C36	22	5%	2.2	C13/17-C34/38	4.4	C11/19-C32/40
C18-C40	23	4%	2.3	C16/20-C38/42	4.6	C13/23-C35/45
C11-C35	25	4%	2.5	C8/14-C32/38	5.0	C6/16-C30/40
C15-C39	25	4%	2.5	C12/18-C36/42	5.0	C10/20-C34/44
C25-C50	26	4%	2.6	C22/28-C47/53	5.2	C20/30-C45/55
C24-C50	27	4%	2.7	C21/27-C47/53	5.4	C19/29-C45/55
C7-C35	29	3%	2.9	C4/10-C32/38	5.8	C1/13-C29/41
C14-C42	29	3%	2.9	C11/17-C39/45	5.8	C8/20-C36/48
C15-C45	31	3%	3.1	C12/18-C42/48	6.2	C9/21-C39/51
C20-C50	31	3%	3.1	C17/23-C47/53	6.2	C14/26-C44/56
C15-C50	36	3%	3.6	C11/19-C46/54	7.2	C8/22-C43/57
C13-C50	38	3%	3.8	C9/17-C46/54	7.6	C5/21-C42/58
C11-C50	40	3%	4.0	C7/15-C46/54	8.0	C3/19-C42/58

Specified range	Total number of carbon numbers ⁽¹⁾	Percentage distribution per carbon number (2)	10% of total number of carbon numbers	±10% of specified range	20% of total number of carbon numbers	±20% of specified range
C20-C60	41	2%	4.1	C16/24-C56/64	8.2	C12/28-C52/68
C15-C60	46	2%	4.6	C10/20-C55/65	9.2	C6/24-C51/69
>C3	98	1%	9.8	>C3/13	19.6	>C3/23
>C11	90	1%	9.0	>C11/20	18.0	>C11/29
>C13	88	1%	8.8	>C13/22	17.6	>C13/31
>C20	81	1%	8.1	>C20/28	16.2	>C20/36
>C24	77	1%	7.7	>C24/32	15.4	>C24/39
>C25	76	1%	7.6	>C25/33	15.2	>C25/40
>C30	71	1%	7.1	>C30/37	14.2	>C30/44
>C34	67	1%	6.7	>C34/41	13.4	>C34/47
>C35	66	2%	6.6	>C35/42	13.2	>C35/48
C5	1	100%	0.1	C5	0.2	C5
C6	1	100%	0.1	C6	0.2	C6
С7	1	100%	0.1	С7	0.2	С7
C8	1	100%	0.1	C8	0.2	C8

<u>Notes</u>

1. If only the lower carbon number is quoted in the substance description, C100 is assumed to be the upper carbon number.

2. Percentage distributions per carbon number have been rounded to nearest integer.

Table 7 -Summary of Decision Tree Results
(including the excluded substances)

Decision tree criterion	Number of samples meeting criterion
Accept ②	5
Accept ⑥	42
Accept ⑧	26
Accept (9)	32
Review ①	7
Review (5)	89
Review 7	13
Reject ③	6
Reject ④	1

- Table 8 Summary of GCxGC Results
- Table 9 Summary of DHA-GC Results
- Table 10 Summary of PIONA-GC Results
- Table 11 Summary of PAH Results
- Table 12 Summary of PAC-2 Results
- Table 13 Summary of Elemental Analysis Results
- Table 14 Carbon : Hydrogen Ratios

Table 15 - Summary of FIMS Results

- <u>Z5499Data_Sample_085A_CM5283668_Arom</u>
- <u>Z5498Data_Sample_074_CM5283665_Arom</u>
- <u>Z5497Data_Sample_085A_CM5283668_Sats</u>
- <u>Z5496Data_Sample_074_CM5283665_Sats</u>
- <u>Z5548Data_Sample_081_CM5283667_Arom</u>
- <u>Z5544Data_Sample_081_CM5283667_Sats</u>
- <u>Z5514Data_Sample_072_CM5283663_Arom</u>
- <u>Z5512Data_Sample_085B_CM5283669_Arom</u>
- <u>Z5511Data_Sample_075_CM5283666_Arom</u>
- <u>Z5510Data_Sample_066_CM5283662_Arom</u>
- <u>Z5509Data_Sample_073_CM5283644_Arom</u>
- <u>Z5507Data_Sample_085B_CM5283669_Sats</u>
- <u>Z5506Data_Sample_075_CM5283666_Sats</u>
- <u>Z5505Data_Sample_073_CM5283664_Sats</u>
- <u>Z5503Data_Sample_072_CM5283663_Sats</u>
- <u>Z5502Data_Sample_066_CM5283662_Sats</u>
- <u>Z5526Data_Sample_092_CM5283672_Sats</u>
- <u>Z5532Data_Sample_092_CM5283672_Arom</u>
- <u>Z5580Data_Sample_150_CM5283689_Arom</u>
- <u>Z5581Data_Sample_151_CM5283690_Arom</u>
- <u>Z5525Data_Sample_085D_CM5283671_Sats</u>
- <u>Z5513Data_Sample_085C_CM5283670_Arom</u>
- <u>Z5508Data_Sample_085C_CM5283670_Sats</u>
- <u>Z5561Data_Sample_119_CM5283680_Sats</u>
- <u>Z5560Data_Sample_118_CM5283679_Sats</u>
- <u>Z5551Data_Sample_117_CM5283678_Arom</u>
- <u>Z5550Data_Sample_115_CM5283677_Arom</u>
- <u>Z5547Data_Sample_117_CM5283678_Sats</u>
- <u>Z5545Data_Sample_115_CM5283677_Sats</u>
- <u>Z5535Data_Sample_085D_CM5283671_Arom</u>
- <u>Z5579Data_Sample_148_CM5283687_Arom</u>
- <u>Z5578Data_Sample_147_CM5283686_Arom</u>
- <u>Z5574Data_Sample_154_CM5283692_Sats</u>
- <u>Z5573Data_Sample_153_CM5283691_Sats</u>
- <u>Z5572Data_Sample_151_CM5283690_Sats</u>
- <u>Z5566Data_Sample_150_CM5283689_Sats</u>
- <u>Z5565Data_Sample_148_CM5283687_Sats</u>
- <u>Z5563Data_Sample_147_CM5283686_Sats</u>
- <u>Z5490Data_Sample_145_CM5283685_Sats</u>
- <u>Z5599Data_Sample_149_CM5283688_Arom</u>
- <u>Z5598Data_Sample_140_CM5283684_Arom</u>

- <u>Z5597Data_Sample_139_CM5283683_Arom</u>
- <u>Z5595Data_Sample_138_CM5283682_Arom</u>
- <u>Z5594Data_Sample_137_CM5283681_Arom</u>
- <u>Z5593Data_Sample_149_CM5283688_Sats</u>
- <u>Z5592Data_Sample_140_CM5283684_Sats</u>
- <u>Z5590Data_Sample_139_CM5283683_Sats</u>
- <u>Z5589Data_Sample_138_CM5283682_Sats</u>
- <u>Z5588Data_Sample_137_CM5283681_Sats</u>
- <u>Z5541Data_Sample_OLBO1_CM5283660_Arom</u>
- <u>Z5539Data_Sample_OLBO1_CM5283660_Sats</u>
- <u>Z5515Data_Sample_OLBO2_CM5283661_Arom</u>
- <u>Z5501Data_Sample_OLBO2_CM5283661_Sats</u>
- <u>Z5531Data_Sample_OLBO3_CM5283673_Arom</u>
- <u>Z5527Data_Sample_OLBO3_CM5283673_Sats</u>
- <u>Z5528Data_Sample_OLBO4_CM5283674_Sats</u>
- <u>Z5534Data_Sample_OLBO4_CM5283674_Arom</u>
- <u>Z5538Data_Sample_OLBO5_CM5283675_Sats</u>
- <u>Z5536Data_Sample_OLBO5_CM5283675_Arom</u>
- <u>Z5549Data_Sample_OLBO6_CM5283676_Arom</u>
- <u>Z5543Data_Sample_OLBO6_CM5283676_Sats</u>

- Table 16 <u>3D Images of FIMS Results</u>
- Table 17 Summary of PCA Results
- Table 18 Summary of HPLC Results
- Table 19 Comparison of HPLC and GCxGC Results from 2015 Analytical

 Program
- Table 20 Summary of TLC-FID Results
- Table 21 Summary of LCC Results
- Table 22 Comparison of LCC and TLC-FID Results from 2015 Analytical

 Program
- Table 23 Summary of Viscosity Results
- Table 24 Summary of Samples Examined by GCxGC

APPENDIX 1 - GCXGC RESULTS FOR SAMPLES ANALYSED IN THE 2013 ANALYTICAL PROGRAM

CON 1 (SRGO)

Middle-distillate exhaustive analysis report

TASE Shell Glob	al Solutions	Theoreter	Analyst: Phone:	Carole.Ada +44 (0)151	ims 373 5562		Job No: Sample:	30523 Concawe S	ample 1	
PO Box 1	inology Centi	re inomion	F-Mail:	Carole Ada	ims@Shell i	com	Eile:	21-Feb-13 2d01 2002	1	
Chester			2 111011.							
CH1 3SH										
Results	All results :	are in % wt l	by means of	f the use of	theoretical	FID respons	factors Th	ese		
rtoounto	factors have	e been calcu	lated throug	h the ECN	method as	published by	Sternberg	et al.		
	The factor u	used for <c5< td=""><td>is that of C</td><td>4 and for ></td><td>C30 is that o</td><td>of C30</td><td>-</td><td></td><td></td><td></td></c5<>	is that of C	4 and for >	C30 is that o	of C30	-			
	Results rep	orted as 0.0	0 should be	read as <0	.01					
C No	nP	isoP	N	DiN	MoAr	NmoAr	Di∆r	NdiAr	Tri∆r	Total
<5	0.00	0.00		Dirt	10107 4	1411074	200	i van u	110 4	0.00
5	0.00	0.00	0.00							0.00
6	0.00	0.00	0.00	0.00	0.00					0.00
7	0.00	0.00	0.01	0.00	0.00					0.01
8	0.00	0.00	0.02	0.00	0.01					0.03
9	0.01	0.01	0.03	0.01	0.03	0.00				0.10
10	0.04	0.03	0.08	0.04	0.07	0.02	0.01			0.28
11	0.09	0.06	0.14	0.09	0.09	0.06	0.06			0.60
12	0.15	0.11	0.25	0.15	0.13	0.15	0.14			1.08
13	0.23	0.20	0.38	0.25	0.17	0.19	0.25	0.00		1.68
14	0.29	0.29	0.48	0.32	0.21	0.32	0.45	0.07	0.00	2.44
15	0.44	0.39	0.67	0.30	0.39	0.36	0.42	0.14	0.03	3.15
10	1.02	0.59	1.00	0.57	0.00	0.49	1.08	0.33	0.29	4.97
18	1.00	1 //	2.66	0.05	1.52	1 16	1.00	0.40	0.50	11.64
19	2 22	2 73	3 38	1.09	2.07	1.68	1.20	0.45	0.30	15.07
20	2.20	3.76	3.18	1.04	2.22	1.31	1.03	0.37	0.15	15.25
21	1.89	2.39	2.76	0.92	1.97	1.19	1.14	0.16	0.03	12.46
22	1.60	2.03	2.19	0.56	1.69	0.87	1.10	0.19	0.00	10.22
23	1.06	1.90	1.76	0.34	1.00	0.40	0.57	0.07	0.00	7.10
24	0.60	1.15	0.73	0.17	0.46	0.16	0.21	0.02	0.00	3.50
25	0.19	0.82	0.33	0.06	0.17	0.05	0.00	0.00	0.00	1.62
26	0.06	0.39	0.10	0.01	0.02	0.00	0.00	0.00	0.00	0.58
27	0.01	0.05	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.08
28	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05
29	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
30	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
>30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	14.61	19.16	21.89	7.07	13.72	9.32	9.49	2.79	1.95	100.00
nP	Normal (line	ear) Paraffin	s							
isoP	lso (branch	ed) Paraffins	3							
N	Naphthenic	s								
DiN	Di-Naphthe	nics								
MoAr	Mono-Arom	natics								
NmoAr	Naphthenic	-mono-Aron	natics							
DiAr	Di-Aromatio	cs								
NdiAr	Naphthenic	-di-Aromatic	s							
TriAr	Tri-Aromati	cs								

CON 2 (SRGO)

							-	,		-	
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions inology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	<u>com</u>	Job No: 30731 Sample: Concawe Sample 2 Date: 11-Apr-13 File: 2d01_0904r3 Analyzer ID: GCxGC01				
Results	All results a factors have The factor u Results rep	are in % wt k e been calcu used for <c5 ported as 0.0</c5 	ese et al.								
C No.	nP	isoP	Ν	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total	
<5	0.00	0.00								0.00	
5	0.00	0.00	0.00							0.00	
6	0.01	0.00	0.01	0.00	0.00					0.02	
7	0.01	0.01	0.03	0.00	0.02					0.07	
8	0.02	0.03	0.10	0.00	0.05					0.20	
9	0.06	0.06	0.14	0.03	0.15	0.01				0.44	
10	0.15	0.16	0.27	0.16	0.21	0.07	0.02			1.05	
11	0.26	0.23	0.40	0.29	0.24	0.21	0.19			1.81	
12	0.39	0.28	0.64	0.35	0.29	0.38	0.67	0.00		3.00	
13	0.63	0.46	0.91	0.65	0.40	0.64	1.23	0.06		4 99	
14	1.09	0.74	1 37	0.99	0.44	0.95	1 37	0.29	0.09	7 33	
15	1.05	1 25	1.88	0.00	0.63	1.06	0.60	0.23	0.03	8.90	
16	2 10	1.23	2 17	0.34	0.03	1.00	0.78	0.41	0.33	10.36	
17	2.10	1.62	2.63	0.70	0.88	1.03	0.80	0.33	0.47	10.50	
18	2.17	1.96	2.03	0.56	0.00	0.71	0.00	0.24	0.44	9.43	
10	1 01	2.45	2.13	0.50	0.00	0.71	0.58	0.27	0.10	9.45	
20	1.51	2.40	1.02	0.01	0.05	0.70	0.50	0.00	0.15	9.44	
20	1.77	2.33	1.55	0.04	0.74	0.00	0.45	0.14	0.02	6.47	
21	1.50	1.37	1.00	0.40	0.62	0.40	0.37	0.10	0.00	0.47	
22	1.34	1.23	1.37	0.22	0.45	0.33	0.32	0.03	0.00	5.30	
23	1.13	1.11	1.00	0.20	0.31	0.24	0.23	0.02	0.00	4.30	
24	0.69	0.00	0.76	0.17	0.25	0.14	0.15	0.00	0.00	3.21	
25	0.64	0.82	0.54	0.16	0.16	0.11	0.04	0.00	0.00	2.47	
26	0.32	0.63	0.25	0.07	0.05	0.05	0.00	0.00	0.00	1.37	
27	0.09	0.27	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.44	
28	0.02	0.11	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
29	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
30	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	
31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total	20.41	19.83	22.36	8.06	8.43	8.84	8.39	2.03	1.66	100.00	
nP	Normal (line	ear) Paraffins									
isoP	Iso (branch	ed) Paraffine									
N	Nahthenics										
DiN	Di Nochtha	a nice									
MoA-	Mons Arr	nics									
NICAL	Nono-Arom	aucs									
NmoAr	Ar Naphthenic-mono-Aromatics										
DIAr	Di-Aromatic	CS									

Middle-distillate exhaustive analysis report

NdiAr

TriAr

Tri-Aromatics

Naphthenic-di-Aromatics

CON 3 (SRGO)

Middle-distillate exhaustive analysis report

TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH Results	al Solutions nology Centr All results a	re Thornton are in % wt l	Analyst: Phone: Fax: E-Mail: by means of	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u> f the use of	ms 373 5562 373 5220 ms@Shell.t	30731 Concawe S 10-Apr-13 2d01_0804 GCxGC01	ample 3 1			
	The factor u Results rep	used for <c5 ported as 0.0</c5 	is that of C 0 should be	4 and for >(read as <0	C30 is that o 0.01	of C30	Stemberg	et al.		
C No. <5	nP 0.00	isoP 0.00	Ν	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total 0.00
5	0.00	0.00	0.00							0.00
6	0.00	0.00	0.00	0.00	0.00					0.01
7	0.01	0.00	0.02	0.00	0.01					0.04
8	0.03	0.02	0.08	0.01	0.05					0.18
9	0.09	0.07	0.14	0.03	0.17	0.00				0.50
10	0.19	0.18	0.28	0.14	0.30	0.05	0.03			1.15
11	0.37	0.29	0.45	0.29	0.37	0.18	0.23			2.18
12	0.60	0.45	0.80	0.45	0.49	0.47	0.73			4.00
13	0.93	0.80	1.21	0.88	0.71	0.78	1.29	0.06		6.67
14	1.49	1.25	1.87	1.45	0.80	1.31	1.51	0.28	0.00	9.95
15	2.22	1.83	2.62	1.14	1.19	1.41	0.80	0.37	0.14	11.71
16	2.31	2.89	2.92	1.03	1.23	1.48	0.84	0.34	0.22	13.25
17	2.19	2.37	3.38	0.96	1.34	1.46	0.81	0.19	0.18	12.89
18	1.80	2.79	2.54	0.69	1.23	1.01	0.65	0.14	0.04	10.89
19	1.35	2 79	2.15	0.60	1 04	0.88	0.48	0.06	0.02	9.37
20	0.96	2.52	1.53	0.49	0.88	0.50	0.35	0.03	0.00	7.26
21	0.65	1 07	0.92	0.34	0 4 9	0.23	0.20	0.01	0.00	3.92
22	0.45	0.81	0.73	0.13	0.37	0.14	0.17	0.00	0.00	2.80
23	0.40	0.60	0.42	0.09	0.20	0.08	0.06	0.00	0.00	1 78
24	0.18	0.37	0.20	0.02	0.09	0.02	0.01	0.00	0.00	0.88
25	0.06	0.22	0.07	0.01	0.02	0.00	0.00	0.00	0.00	0.39
26	0.01	0.10	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.14
27	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.14
28	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	16.23	21.47	22.33	8.76	10.97	10.00	8.16	1.48	0.60	100.00
nP	Normal (line	ear) Paraffin	9							
isoP	Iso (branch	ed) Paraffins								
N	Nanhthenic	say i arannis s								
DiN	Di-Naphthe	nice								
MoAr	Mono Arom	nics								
Nico Ar	Nono-Arom	Iddics	ation							
DiAr	Di Areresti	-mono-Arom	aucs							
DIAI NHA	Di-Aromatic	JS Assessed								
NdiAr	Naphthenic	-di-Aromatic	S S							

CON 3I (SRGO)

							e arra	,		-	
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions nology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	<u>com</u>	Job No: 30731 Sample: Concawe Sample 3I Date: 11-Apr-13 File: 2d01_0904r4 Analyzer ID: GCxGC01				
Results	All results a factors have The factor u Results rep										
C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total	
<5	0.00	0.00								0.00	
5	0.00	0.00	0.00							0.00	
6	0.00	0.00	0.02	0.00	0.00					0.03	
7	0.05	0.04	0.16	0.00	0.04					0.29	
8	0.18	0.14	0.49	0.03	0.26					1.10	
9	0.54	0.41	0.71	0.23	0.65	0.01				2.53	
10	1.36	1.03	1.45	0.83	0.94	0.15	0.22			5.98	
11	3.02	1 78	2.54	1 70	1.08	0 47	0.84			11 42	
12	3.94	2.62	3.51	2.07	0.86	0.79	1.11	0.00		14.90	
13	4 14	3 29	3.81	2.63	0.92	1 00	0 77	0.02		16.58	
14	3.96	3 54	3.60	2 14	0.60	1 13	0.44	0.06	0.00	15.48	
15	3.61	2.94	3.01	1 36	0.55	0.90	0.20	0.03	0.00	12.60	
16	2.50	3 14	2 32	0.70	0.53	0.50	0.06	0.00	0.00	9 77	
17	1 33	1.45	1 54	0.49	0.25	0.28	0.00	0.00	0.00	5 35	
18	0.34	1.45	0.55	0.45	0.25	0.20	0.02	0.00	0.00	2.00	
10	0.06	1.10	0.33	0.13	0.00	0.00	0.00	0.00	0.00	1.40	
20	0.00	0.25	0.12	0.04	0.00	0.00	0.00	0.00	0.00	0.29	
20	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.25	
21	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
22	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
23	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total	25.07	22.93	23.85	12.38	6.73	5.27	3.65	0.11	0.00	100.00	
nP	Normal (line	ear) Paraffing	5								
isoP	Iso (branch	ed) Paraffins									
N	Naphthenics										
DiN	Di-Naphthe	nice									
MoAr	Mone Area	nics									
Nime Ar	Nono-Arom	IddlCS	ation								
NmoAr	r Naphthenic-mono-Aromatics										
DIAr	Di-Aromatic	CS									

Middle-distillate exhaustive analysis report

NdiAr

TriAr

Tri-Aromatics

Naphthenic-di-Aromatics

CON 4 (SRGO)

		Middle	e-dist	illate	exha	ustiv	e ana	lysis	repor	t
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions inology Centi	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.(</u>	<u>com</u>	Job No: Sample: Date: File: Analyzer ID:	3071 Concawe S 10-Apr-13 2d01_0804 GCxGC01	ample 4 r2	
Results	All results a factors have The factor u Results rep	are in % wt I e been calcu used for <c5 ported as 0.0</c5 	by means of ilated throug i is that of C IO should be	f the use of gh the ECN 4 and for >(read as <0	theoretical method as C30 is that o .01	FID respon published b of C30	s factors. The ly Sternberg (ese et al.		
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Total nP isoP N DiN	nP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.14 0.26 0.45 0.73 1.11 1.50 1.70 1.82 1.68 1.55 1.24 0.96 0.41 0.17 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.00 0.01 0.03 0.06 0.14 0.26 0.45 0.73 1.11 1.55 1.24 0.96 0.41 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.03 0.01 0.03 0.06 0.14 0.55 1.24 0.96 0.41 0.75 1.24 0.96 0.41 0.07 0.03 0.01 0.00 0.00 0.00 0.01 0.03 0.01 0.07 0.03 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.07 0.03 0.00 0.00 0.00 0.00 0.01 0.07 0.03 0.00 0.	isoP 0.00 0.02 1.69 1.88 2.04 1.92 1.81 1.02 0.72 0.34 0.02 0.00 0.00 0.00 1.832 earritimes s mics	N 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.12 0.22 0.38 0.76 1.09 1.48 2.46 2.36 2.88 2.76 2.10 1.38 1.06 0.65 0.22 0.11 0.03 0.01 0.00 0.00 0.00 20.14	DiN 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.11 0.14 0.25 0.29 0.50 0.83 1.01 0.59 0.53 0.53 0.53 0.53 0.53 0.53 0.37 0.61 0.40 0.28 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00	MoAr 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.46 0.72 1.02 1.40 1.84 1.99 1.91 1.71 1.24 0.65 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.40 1.40 1.40 1.84 1.99 1.91 1.71 1.24 0.65 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.46 0.72 1.40 1.84 1.99 1.91 1.71 1.24 0.65 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 1.40 1.84 1.99 1.91 1.71 1.24 0.65 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.22 1.40 1.84 1.99 1.91 1.71 1.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.22 1.40 1.84 1.99 1.91 1.71 1.24 0.65 0.13 0.00	NmoAr 0.00 0.00 0.00 0.01 0.03 0.10 0.18 0.26 0.45 0.58 1.29 1.44 1.07 1.08 0.62 0.62 0.65 0.27 0.10 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.00 0.02 0.02 0.00 0.02 0.00 0.02 0.02 0.00 0.02 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.000 0.00	DiAr 0.00 0.00 0.03 0.12 0.22 0.21 0.32 0.54 0.89 0.97 1.08 1.34 1.69 1.61 1.42 0.68 0.31 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.52	NdiAr 0.00 0.04 0.18 0.22 0.45 0.53 0.21 0.43 0.21 0.43 0.17 0.30 0.15 0.11 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.11 0.22 0.45 0.31 0.31 0.32 0.45 0.31 0.32 0.45 0.34 0.21 0.45 0.53 0.34 0.21 0.45 0.53 0.34 0.21 0.45 0.53 0.34 0.21 0.45 0.53 0.34 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00	TriAr 0.02 0.20 0.53 0.89 0.60 0.50 0.34 0.16 0.08 0.07 0.00 0.00 0.00 0.00 0.00 0.00	Total 0.00 0.00 0.00 0.00 0.01 0.02 0.09 0.31 0.76 1.45 2.52 4.54 6.06 8.03 10.80 12.16 12.33 12.22 9.95 7.81 5.86 2.85 1.32 0.55 0.26 0.05 0.03 0.01 0.00 100.0
MoAr NmoAr DiAr NdiAr	Mono-Arom Naphthenic Di-Aromatic Naphthenic	natics -mono-Arom cs -di-Aromatic	natics :s							

TriAr Tri-Aromatics

CON 4I (SRGO)

Middle-distillate exhaustive analysis report

TASE Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH			Analyst: Phone: Fax: E-Mail:	Analyst: Carole.Adams Job No: 30731 Phone: +44 (0)151 373 5562 Sample: Concawe Sample 4I Fax: +44 (0)151 373 5220 Date: 13-May-13 E-Mail: Carole.Adams@Shell.com File: 2d01_0805r1 Analyzer ID: GCxGC01 Analyzer ID: GCxGC01							
Results	All results a factors have The factor u Results rep	are in % wt e been calcu used for <c5 orted as 0.0</c5 	by means of ulated throug 5 is that of C 00 should be	ff the use of gh the ECN 4 and for >0 e read as <0	theoretical method as p C30 is that c 0.01	FID respons published by of C30	factors. The Sternberg e	ese et al.			
C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total	
<5	0.00	0.00								0.00	
5	0.00	0.00	0.00							0.00	
6	0.00	0.00	0.00	0.00	0.00					0.00	
7	0.01	0.00	0.01	0.00	0.00					0.02	
8	0.01	0.01	0.01	0.00	0.00					0.03	
9	0.02	0.01	0.01	0.00	0.00	0.00				0.05	
10	0.04	0.02	0.01	0.00	0.00	0.00	0.00			0.08	
11	0.09	0.03	0.02	0.01	0.00	0.00	0.00			0.16	
12	0.17	0.04	0.05	0.01	0.00	0.00	0.01			0.28	
13	0.28	0.07	0.08	0.05	0.01	0.01	0.02	0.00		0.50	
14	0.43	0.11	0.13	0.10	0.02	0.02	0.01	0.00	0.00	0.82	
15	0.71	0.13	0.20	0.08	0.02	0.02	0.01	0.02	0.06	1.24	
16	1.05	0.27	0.27	0.05	0.05	0.04	0.01	0.03	0.18	1.93	
17	1.56	0.33	0.53	0.10	0.06	0.07	0.02	0.06	0.17	2.91	
18	2.42	0.55	0.79	0.13	0.14	0.13	0.06	0.08	0.04	4.35	
19	4.74	1.06	1.61	0.29	0.18	0.35	0.13	0.04	0.01	8.41	
20	9.64	2.06	2.89	0.57	0.46	0.60	0.18	0.04	0.00	16.45	
21	12.27	3.36	3.22	0.51	0.60	0.61	0.19	0.02	0.00	20.77	
22	8.74	3.28	2.73	0.33	0.48	0.29	0.12	0.00	0.00	15.96	
23	5.91	2.84	1.75	0.13	0.33	0.18	0.06	0.00	0.00	11.20	
24	3.50	1.86	0.98	0.06	0.14	0.07	0.01	0.00	0.00	6.62	
25	2.05	1.11	0.55	0.05	0.06	0.05	0.00	0.00	0.00	3.87	
26	1.07	0.82	0.30	0.03	0.04	0.03	0.00	0.00	0.00	2.29	
27	0.57	0.32	0.16	0.03	0.00	0.02	0.00	0.00	0.00	1.10	
28	0.25	0.20	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.51	
29	0.13	0.08	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.23	
30	0.05	0.05	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.11	
31	0.03	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	
32	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
33	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
Total	55.74	18.62	16.41	2.55	2.59	2.49	0.82	0.29	0.46	99.96	
nP isoP	Normal (line Iso (branch	ear) Paraffin ed) Paraffins	S 3								

isoP	lso (branched) Paraffins
N	Naphthenics
DiN	Di-Naphthenics
MoAr	Mono-Aromatics
NmoAr	Naphthenic-mono-Aromatics
DiAr	Di-Aromatics
NdiAr	Naphthenic-di-Aromatics
TriAr	Tri-Aromatics

CON 5 (SRGO)

TASE Shell Glol Shell Tecl PO Box 1 Chester CH1 3SH	bal Solutions hnology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ams 373 5562 373 5220 ams@Shell.	com	Job No: 30523 Sample: Concawe Sample 5 Date: 22-Feb-13 File: 2d01_2002r2 Analyzer ID: GCxGC01				
Results	All results a factors have The factor u Results rep	are in % wt e been calcu used for <c5 ported as 0.0</c5 	by means of ulated throug is that of C 00 should be	f the use of gh the ECN 4 and for > read as <0	theoretical method as C30 is that ().01	FID respons published by of C30	s factors. The y Sternberg	ese et al.			
C No. <5 5 6	nP 0.00 0.00 0.00	isoP 0.00 0.00 0.00	N 0.00 0.00	DiN 0.00	MoAr 0.00	NmoAr	DiAr	NdiAr	TriAr	Total 0.00 0.00 0.00	
7 8 9 10	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.01	0.00 0.01 0.01 0.02	0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.01	0.00 0.00	0.00			0.01 0.01 0.02 0.04	
11 12 13 14	0.01 0.02 0.05 0.10	0.01 0.02 0.04 0.09	0.03 0.07 0.13 0.24	0.03 0.04 0.13 0.21	0.01 0.03 0.04 0.07	0.01 0.03 0.08 0.19	0.02 0.08 0.18 0.26	0.00	0.00	0.10 0.28 0.66 1.18	
15 16 17 18 19	0.20 0.33 0.57 0.89 1.41	0.14 0.33 0.46 0.82 1.55	0.42 0.60 1.05 1.67 2.38	0.24 0.27 0.52 0.53 1.15	0.20 0.29 0.50 0.70 1.27	0.26 0.32 0.50 0.71 1.32	0.30 0.44 0.55 0.81 0.83	0.07 0.17 0.24 0.41 0.57	0.02 0.20 0.56 0.81 0.50	1.85 2.95 4.95 7.35 10.99	
20 21 22 23	2.13 2.70 2.54 1.62	2.18 2.74 3.37 3.08	3.86 4.88 5.11 3.38	1.45 1.86 0.96 0.76	1.74 1.68 1.50 1.05	1.50 1.83 1.54 0.68	0.94 1.17 1.04 0.52	0.46 0.27 0.33 0.13	0.17 0.09 0.00 0.00	14.42 17.21 16.39 11.23	
24 25 26 27	0.81 0.33 0.10 0.03	2.08 1.41 0.79 0.19	1.72 0.76 0.25 0.04	0.48 0.10 0.03 0.00	0.37 0.20 0.02 0.00	0.18 0.10 0.00 0.00	0.20 0.00 0.00 0.00	0.04 0.00 0.00 0.00	0.00 0.00 0.00 0.00	5.88 2.90 1.20 0.26	
28 29 30 >30	0.01 0.00 0.00 0.00	0.07 0.03 0.01 0.00	0.01 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.08 0.03 0.01 0.00	
Total nP isoP	13.87 Normal (line Iso (branch	19.42 ear) Paraffins ed) Paraffins	26.63	8.76	9.69	9.23	7.35	2.71	2.35	100.00	
N DiN MoAr NmoAr	Naphthenic Di-Naphthe Mono-Arom Naphthenic	s nics natics mono-Aron	natics								
DiAr NdiAr TriAr	Di-Aromatic Naphthenic Tri-Aromatic	cs :-di-Aromatic cs	S								

Middle-distillate exhaustive analysis report

CON 6 (OGO)

Middle-distillate exhaustive analysis report															
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	oal Solutions nnology Cent	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	com A	Job No: Sample: Date: File: Analyzer ID:	30731 Concawe S 11-Apr-13 2d01_09041 GCxGC01	ample 6 r5						
Results	Results All results are in % wt by means off the use of theoretical FID respons factors. These factors have been calculated through the ECN method as published by Sternberg et al. The factor used for <c5 and="" c4="" for="" is="" of="" that="">C30 is that of C30 Results reported as 0.00 should be read as <0.01 C No. nP isoP N DiN MoAr NmoAr DiAr NdiAr Total</c5>														
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >33 Total nP isoP	nP 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.36 0.34 0.34 0.37 0.43 0.45 0.65 0.65 0.72 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.70 0.58 0.43 0.21 0.08 0.21 0.08 0.02 0.01 0.00 0.00 0.00 0.72 0.77 0.78 0.43 0.55 0.65 0.72 0.77 0.78 0.798 Normal (lin Iso (branch	isoP 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.50 0.49 0.60 0.55 0.54 0.63 0.62 0.79 0.98 0.99 0.90 0.88 0.80 0.63 0.48 0.29 0.07 0.05 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.80 0.63 0.48 0.29 0.07 0.05 0.02 0.01 0.00 0.00 0.00 0.99 0.90 0.05 0.02 0.01 0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.01 0.00	N 0.00 0.00 0.01 0.05 0.60 0.87 1.00 1.11 1.18 1.28 1.22 1.46 1.44 1.44 1.44 1.44 1.44 1.44 1.44	DiN 0.00 0.00 0.03 0.37 0.69 0.66 0.94 1.07 1.10 0.75 0.79 0.73 0.53 0.74 0.70 0.55 0.31 0.22 0.13 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MoAr 0.00 0.00 0.53 6.93 3.39 0.85 0.70 0.85 0.68 0.63 0.83 0.92 0.84 1.04 1.01 0.76 0.78 0.44 0.26 0.12 0.00 0.02 0.00 0.00 0.00 0.00 0.85 0.70 0.85 0.70 0.85 0.70 0.85 0.68 0.63 0.83 0.92 0.84 1.04 1.04 0.26 0.02 0.00	NmoAr 0.23 0.91 1.46 1.63 1.83 1.87 1.94 1.62 1.94 1.36 1.51 1.29 1.10 0.74 0.42 0.18 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	DiAr 0.05 0.18 0.31 0.50 0.86 0.87 0.74 0.96 0.87 0.77 0.60 0.40 0.31 0.12 0.05 0.01 0.00 0.05 0.74 0.55 0.87 0.74 0.96 0.87 0.77 0.60 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.05 0.74 0.05 0.01 0.05 0.01 0.00	NdiAr 0.01 0.09 0.37 0.67 0.57 0.39 0.33 0.12 0.19 0.11 0.03 0.01 0.00 0.01 0.22 0.00	TriAr 0.02 0.10 0.13 0.20 0.15 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total 0.00 0.00 0.00 0.54 7.25 5.61 4.91 5.14 6.26 6.96 7.56 6.94 7.82 7.16 7.17 7.25 6.17 5.24 3.62 2.34 1.31 0.52 0.11 0.06 0.02 0.01 0.00 0.00 0.00 0.00					
N DiN MoAr	Naphthenic Di-Naphthe Mono-Aron	nics natics													

NmoAr DiAr Di-Aromatics NdiAr Naphthenic-di-Aromatics

Naphthenic-mono-Aromatics

TriAr Tri-Aromatics

CON 7 (OGO)

		Middle	e-dist	illate	exha	ustiv	e ana	lysis	repor	t	
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	oal Solutions nnology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	com	Job No: 30523 Sample: Concawe Sample 7 Date: 22-Feb-13 File: 2d01_2101r3 Analyzer ID: GCxGC01				
Results	All results a factors have The factor u Results rep	are in % wt l e been calcu used for <c5 ported as 0.0</c5 	by means of ilated throug i is that of C IO should be	f the use of gh the ECN 4 and for >0 read as <0	theoretical method as C30 is that o .01	FID respons published b of C30	s factors. The y Sternberg (ese et al.			
C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total	
<5	0.00	0.00								0.00	
5	0.01	0.00	0.01	0.00	0.00					0.02	
5	0.01	0.00	0.01	0.00	0.00					0.03	
8	0.01	0.01	0.05	0.00	0.01					0.03	
9	0.28	0.15	0.44	0.08	0.23	0.01				1.19	
10	0.38	0.26	0.57	0.33	0.32	0.26	0.00			2.12	
11	0.57	0.32	0.82	0.86	0.49	1.30	0.04			4.39	
12	1.21	0.58	1.80	1.65	0.85	2.19	0.15			8.43	
13	1.77	1.43	2.75	3.00	0.99	2.28	0.27	0.01		12.49	
14	1.81	1.81	3.15	3.15	1.08	2.02	0.46	0.02	0.00	13.49	
15	1.79	1.64	3.22 2.85	1.89	1.20	1.84	0.41	0.08	0.00	12.15	
10	1.32	1.50	2.05	1.24	0.90	1.20	0.31	0.11	0.00	9.27	
18	1.06	1.32	2.37	0.82	0.63	0.77	0.26	0.06	0.01	7.30	
19	0.84	1.61	1.95	1.21	0.34	0.93	0.13	0.06	0.00	7.07	
20	0.65	1.19	1.54	0.87	0.22	0.46	0.08	0.02	0.00	5.03	
21	0.46	0.54	0.98	0.49	0.07	0.28	0.05	0.01	0.00	2.88	
22	0.33	0.39	0.71	0.11	0.05	0.11	0.02	0.00	0.00	1.72	
23	0.1/	0.24	0.31	0.06	0.02	0.05	0.00	0.00	0.00	0.83	
24	0.08	0.13	0.13	0.03	0.00	0.01	0.00	0.00	0.00	0.30	
25	0.03	0.03	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.20	
27	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	
28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
>30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total	14.35	14.95	26.85	17.13	8.78	14.84	2.59	0.48	0.02	100.00	
nP isoP N DiN MoAr NmoAr DiAr NdiAr TriAr	Normal (line Iso (branch Naphthenic Di-Naphthe Mono-Arom Naphthenic Di-Aromatic Naphthenic Tri-Aromatic	ear) Paraffins ed) Paraffins s nics natics -mono-Arom cs -di-Aromatic cs	s anatics								

CON 8 (OGO)

TASE Shell Global Solutions Analyst: Carole Adams Phone: +44 (0)151 373 5522 E-Mait: Carole Adams@Shell.com Job No: 30634 Sample: Concave Sample 8 Diat: 15April: 12401.02003r1 Analyzer ID: GCxGC01 Results All results are in % wt by means off the use of theoretical FID respons factors. These factors have been calculated through the ECN method as published by Stemberg et al. The factor used for <cs and="" c4="" for="" is="" of="" that="">C30 8 The isape 1 Noise Total C No. nP isape 1 DiN MoAr NmoAr DiAr NdiAr TiAr C No. nP isape 1 DiN MoAr NmoAr DiAr NdiAr TiAr Total C No. nP isape 1 DiN MoAr NmoAr DiAr NdiAr TiAr Total C No. nP isape 1 DiN MoAr NmoAr DiAr NdiAr TiAr Total G 0.00 0.00<</cs>									.,		-	
Results All results are in % wt by means off the use of theoretical FID respons factors. These factors have been calculated through the ECN method as published by Stemberg et al. The factor used for <c5 0.00<="" <c30="" and="" c30="" c4="" for="" is="" of="" th="" that=""> Total <5 0.00 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 0.00 0.00 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8 0.00 0.</c5>	TASE Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH			Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	<u>com</u>	Job No: 30634 Sample: Concawe Sample 8 Date: 15-Apr-13 File: 2d01_02003r1 Analyzer ID: GCxGC01				
C No. nP isoP N DiN MoAr NmoAr DiAr NdiAr TriAr Total 5 0.00 </th <th>Results</th> <th>All results a factors have The factor u Results rep</th> <th>are in % wt e been calcu used for <c5 ported as 0.0</c5 </th> <th>by means of ulated throug 5 is that of C 00 should be</th> <th>f the use of h the ECN 4 and for >(read as <0</th> <th></th> <th></th>	Results	All results a factors have The factor u Results rep	are in % wt e been calcu used for <c5 ported as 0.0</c5 	by means of ulated throug 5 is that of C 00 should be	f the use of h the ECN 4 and for >(read as <0							
-55 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 7 0.00 0.00 0.00 0.00 0.00 8 0.00 0.00 0.00 0.00 0.00 9 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 0.00 11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 16.37 14 0.13 0.90 9.22 14.19 3.05 4.81 0.14 0.00 0.00 2.43 15 0.06 3.27 0.24 0.06 0.21 0.00 0.00 1.43 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00	C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total	
5 0.00 0.	<5	0.00	0.00								0.00	
6 0.00 0.00 0.00 0.00 0.00 7 0.00 0.00 0.00 0.00 0.00 8 0.00 0.00 0.00 0.00 0.00 9 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 11 0.00 0.00 0.01 0.00 0.00 12 0.00 0.00 0.01 0.00 0.00 0.00 13 0.04 0.9 2.99 7.79 2.41 2.92 0.12 0.00 0.00 2.24 14 0.13 0.90 9.22 1.41 9 3.33 0.33 0.00 0.00 2.737 16 0.00 3.6 8.17 2.42 0.70 0.58 0.00 0.00 0.439 17 0.00 0.60 0.01 0.00 0.00 0.00 0.00 0.00	5	0.00	0.00	0.00							0.00	
7 0.00 0.00 0.00 0.00 0.00 8 0.00 0.00 0.00 0.00 0.00 0.00 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 12 0.00 0.00 0.51 1.46 0.66 0.69 0.01 3.33 13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 16.37 14 0.03 5.8 1.7 2.42 0.70 6.88 0.00 0.00 14.43 15 0.66 3.27 0.24 0.70 0.88 0.00 0.00 14.93 17 0.00 0.66 0.11 0.00 0.00 0.00 0.00 0.00 18	6	0.00	0.00	0.00	0.00	0.00					0.00	
8 0.00 0.00 0.00 0.00 0.00 9 0.00 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 0.00 11 0.00 0.00 0.01 0.00 0.00 0.00 12 0.00 0.00 0.01 0.03 0.00 0.02 12 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 0.00 22.41 14 0.13 0.90 9.22 1.45 1.46 3.33 0.03 0.00 0.00 22.47 16 0.06 3.27 0.24 0.66 0.21 0.00 0.00 1.43 3.33 17 0.00 0.66 3.27 0.24 0.66 0.21 0.00 0.00 0.00 1.43 33 18 0.00 0.06 0.10 0.00 0.00 0.00 0.00	7	0.00	0.00	0.00	0.00	0.00					0.00	
9 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00 0.00 11 0.00 0.00 0.01 0.00 0.00 0.00 12 0.00 0.00 0.51 1.46 0.66 0.69 0.01 3.33 13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 0.00 2.244 15 0.06 2.85 12.19 7.45 1.46 3.33 0.03 0.00 0.00 14 9.3 16 0.00 0.66 3.27 0.24 0.66 0.21 0.00 0.00 0.00 14.93 17 0.00 0.66 0.11 0.00	8	0.00	0.00	0.00	0.00	0.00					0.00	
10 0.00 0.00 0.00 0.00 0.00 0.00 11 0.00 0.00 0.07 0.13 0.04 0.03 0.00 0.28 12 0.00 0.00 0.51 1.46 0.66 0.69 0.01 3.33 13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 0.00 3.24 15 0.06 2.85 1.219 7.45 1.46 3.33 0.03 0.00 0.00 27.37 16 0.00 3.05 8.17 2.42 0.70 0.58 0.00 0.00 0.00 4.93 17 0.00 0.66 0.10 0.00 <td>9</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>0.00</td>	9	0.00	0.00	0.00	0.00	0.00	0.00				0.00	
11 0.00 0.00 0.07 0.13 0.04 0.03 0.00 0.00 0.28 12 0.00 0.00 0.51 1.46 0.66 0.69 0.01 3.33 13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 16.37 14 0.13 0.90 9.22 14.19 3.05 4.81 0.14 0.00 0.00 32.44 15 0.06 2.85 12.19 7.45 1.46 3.33 0.03 0.00 0.00 14.93 16 0.00 3.05 8.17 2.42 0.70 0.56 0.00 0.00 14.93 18 0.00 0.66 0.01 0.00	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00	
12 0.00 0.00 0.51 1.46 0.66 0.69 0.01 3.33 13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 16.37 14 0.13 0.90 9.22 14.19 3.05 4.81 0.14 0.00 0.00 32.44 15 0.06 2.85 12.19 7.45 1.46 3.33 0.00 0.00 0.00 14.93 16 0.00 3.05 8.17 2.42 0.70 0.58 0.00 0.00 0.00 14.93 17 0.00 0.66 0.21 0.00 </td <td>11</td> <td>0.00</td> <td>0.00</td> <td>0.07</td> <td>0.13</td> <td>0.04</td> <td>0.03</td> <td>0.00</td> <td></td> <td></td> <td>0.28</td>	11	0.00	0.00	0.07	0.13	0.04	0.03	0.00			0.28	
13 0.04 0.09 2.99 7.79 2.41 2.92 0.12 0.00 16.37 14 0.13 0.90 9.22 14.19 3.05 4.81 0.14 0.00 0.00 32.44 15 0.06 2.85 12.19 7.45 1.46 3.33 0.03 0.00 0.00 27.37 16 0.00 3.05 8.17 2.42 0.70 0.58 0.00 0.00 0.00 14.93 17 0.00 0.66 0.10 0.0	12	0.00	0.00	0.51	1.46	0.66	0.69	0.01			3.33	
14 0.13 0.90 9.22 14.19 3.05 4.81 0.14 0.00 0.00 32.44 15 0.06 2.85 12.19 7.45 1.46 3.33 0.03 0.00 0.00 27.37 16 0.00 3.05 8.17 2.42 0.70 0.56 0.00 0.00 0.00 14.93 17 0.00 0.66 3.27 0.24 0.06 0.21 0.00 0.00 0.00 14.93 18 0.00 0.06 0.10 0.0	13	0.04	0.09	2.99	7.79	2.41	2.92	0.12	0.00		16.37	
15 0.06 2.85 12.19 7.45 1.46 3.33 0.03 0.00 0.00 27.37 16 0.00 3.05 8.17 2.42 0.70 0.58 0.00 0.00 0.00 14.93 17 0.00 0.66 3.27 0.24 0.06 0.21 0.00	14	0.13	0.90	9.22	14.19	3.05	4.81	0.14	0.00	0.00	32.44	
16 0.00 3.05 8.17 2.42 0.70 0.58 0.00 0.00 0.00 14.93 17 0.00 0.60 3.27 0.24 0.06 0.21 0.00 0.00 0.00 4.39 18 0.00 0.06 0.11 0.00 0.	15	0.06	2.85	12.19	7.45	1.46	3.33	0.03	0.00	0.00	27.37	
17 0.00 0.60 3.27 0.24 0.06 0.21 0.00 <	16	0.00	3.05	8.17	2.42	0.70	0.58	0.00	0.00	0.00	14.93	
18 0.00 0.08 0.60 0.01 0.00 0	17	0.00	0.60	3.27	0.24	0.06	0.21	0.00	0.00	0.00	4.39	
19 0.00 0.06 0.10 0.00 0	18	0.00	0.08	0.60	0.01	0.00	0.00	0.00	0.00	0.00	0.69	
20 0.00 0.02 0.02 0.00 0	19	0.00	0.06	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.16	
21 0.00 0.01 0.00 <	20	0.00	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.04	
22 0.00 0	21	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
23 0.00 <	22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
24 0.00 0	23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
25 0.00 0	24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
26 0.00 0	25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
27 0.00 0	26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
26 0.00 0	21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
25 0.00 0	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
30 0.00 0	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
31 0.00 <	31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
32 0.00 0	32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
>33 0.00	33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Total 0.23 7.67 37.13 33.69 8.39 12.59 0.31 0.00 0.00 100.00 nP Normal (linear) Paraffins isoP Iso (branched) Paraffins	>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
nP Normal (linear) Paraffins isoP Iso (branched) Paraffins N Naphthenics DiN Di-Naphthenics MoAr Mono-Aromatics NmoAr Naphthenic-mono-Aromatics DiAr Di-Aromatics	Total	0.23	7.67	37.13	33.69	8.39	12.59	0.31	0.00	0.00	100.00	
isoP Iso (branched) Paraffins N Naphthenics DiN Di-Naphthenics MoAr Mono-Aromatics NmoAr Naphthenic-mono-Aromatics DiAr Di-Aromatics	nP	Normal (line	ear) Paraffin	s								
N Naphthenics DiN Di-Naphthenics MoAr Mono-Aromatics NmoAr Naphthenic-mono-Aromatics DiAr Di-Aromatics	isoP	Iso (branch	ed) Paraffing	3								
DiN Di-Naphthenics MoAr Mono-Aromatics NmoAr Naphthenic-mono-Aromatics DiAr Di-Aromatics	N	Naphthenic	s	,								
MoAr Mono-Aromatics NmoAr Naphthenic-mono-Aromatics DiAr Di-Aromatics	DiN	Di-Nanhthe	nics									
NmoAr Naphthenic-mono-Aromatics DiAr Di-Aromatics	MoAr	Mono-Aron	natics									
DiAr Di-Aromatics	NmoAr	Naphthenic	-mono-Aron	natios								
	DiAr	Di-Aromatic	CS									

Middle-distillate exhaustive analysis report

Tri-Aromatics

Naphthenic-di-Aromatics

NdiAr

TriAr

CON 9 (OGO)

	I	Middle	e-dist	illate	exha	ustive	e ana	lysis	repor	t	
TASE Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH		Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 Carole.Ada	ms 373 5562 373 5220 ms@Shell.	com A	Job No: 30591 Sample: Concawe Sample 9 Date: 20-Mar-13 File: 2d01_1103r1 Analyzer ID: GCxGC01					
Results	All results a factors have The factor u Results rep	are in % wt l e been calcu used for <c5 ported as 0.0</c5 	by means of ilated throug i is that of C 10 should be	ff the use of gh the ECN 4 and for >(read as <0	theoretical method as C30 is that (.01	FID respons published by of C30	factors. Th Sternberg	ese et al.			
C No. <5 5	nP 0.00 0.00	isoP 0.00 0.00	N 0.00	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total 0.00 0.01	
7 8 9	0.01 0.04 0.11	0.00 0.01 0.04 0.10	0.02 0.08 0.18 0.30	0.00 0.00 0.01 0.06	0.00 0.02 0.10 0.32	0.01				0.03 0.13 0.36 0.89	
10 11 12	0.30 0.56 0.84	0.29 0.49 0.66	0.54 0.80 1.25	0.29 0.78 1.03	0.51 0.59 0.71	0.16 0.74 1.27	0.01 0.10 0.32			2.10 4.05 6.09	
13 14 15	1.17 1.46 1.67	1.16 1.51 1.70	1.58 2.02 2.12	1.43 1.50 1.06	0.83 0.84 0.98	1.47 1.48 1.23	0.51 0.64 0.50	0.04 0.13 0.25	0.00	8.19 9.58 9.54	
16 17 18 19	1.65 1.64 1.55 1.43	1.93 1.57 1.92 2.37	2.12 2.48 2.14 2.15	0.82 0.85 0.52 0.71	0.91 0.85 0.74 0.76	0.98 0.88 0.67 0.73	0.39 0.39 0.36 0.17	0.32 0.13 0.13 0.04	0.06 0.07 0.03 0.00	9.18 8.85 8.06 8.36	
20 21 22	1.36 1.18 0.99	2.05 1.33 1.06	1.89 1.60 1.51	0.53 0.41 0.17	0.59 0.46 0.37	0.41 0.31 0.22	0.14 0.11 0.09	0.03 0.01 0.01	0.00 0.00 0.00	6.99 5.41 4.41	
23 24 25 26	0.76 0.50 0.31 0.15	0.96 0.61 0.52 0.38	1.06 0.61 0.28 0.23	0.12 0.10 0.04 0.04	0.17 0.09 0.06 0.02	0.10 0.07 0.04 0.02	0.02 0.02 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	3.19 1.99 1.25 0.85	
20 27 28 29	0.07 0.03 0.01	0.12 0.08 0.04	0.04 0.03 0.01	0.00 0.00 0.00	0.02 0.00 0.00 0.00	0.02 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.22 0.14 0.06	
30 31 32	0.01 0.00 0.00	0.03 0.01 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.03 0.01 0.00	
>33 >33 Total	0.00	0.00	0.00	0.00	0.00 0.00 9.92	0.00	0.00	0.00	0.00	0.00	
nP isoP N DiN MoAr NmoAr	Normal (linear) Paraffins Iso (branched) Paraffins Naphthenics Di-Naphthenics Mono-Aromatics Naphthenic-mono-Aromatics										

DiAr NdiAr

Di-Aromatics Naphthenic-di-Aromatics

TriAr Tri-Aromatics

CON 11 (OGO)

тл	SE			Analyst:	Carole Ada	me		lob No: 30731						
Sh	ell Glob	al Solutions		Phone:	+44 (0)151	373 5562		Sample:	Concawe S	ample 11				
Sh	ell Tech	nology Centr	e Thornton	Fax:	+44 (0)151	373 5220		Date: 19-Apr-13						
PC	Box 1			E-Mail:	Carole.Ada	ms@Shell.	<u>com</u>	File: 2d01_1704r1						
Ch	ester							Analyzer ID:	GCxGC01					
СН	11 3SH													
Re	sults	All results a	are in % wt l	by means of	f the use of	theoretical	FID respons	s factors. The	950					
	ouno	factors have	e been calcu	lated throug	h the ECN	method as	published b	v Sternberg	et al.					
		The factor u	used for <c5< th=""><th>is that of C</th><th>4 and for >0</th><th>C30 is that o</th><th>of C30</th><th></th><th></th><th></th><th></th></c5<>	is that of C	4 and for >0	C30 is that o	of C30							
		Results rep	orted as 0.0	0 should be	read as <0	.01								
	C No	пP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	Tri∆r	Total			
	<5	0 00	0.00		Dire	WIO/A	NITIO/N	DIAI	INGI/N		0.00			
	5	0.00	0.00	0.00							0.00			
	6	0.00	0.00	0.00	0.00	0.00					0.00			
	7	0.00	0.00	0.00	0.00	0.00					0.00			
	8	0.00	0.00	0.00	0.00	0.00					0.00			
	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00			
	10	0.04	0.00	0.00	0.00	0.00	0.00	0.00			0.04			
	12	0.12	0.00	0.00	0.00	0.00	0.00	0.00			0.12			
	13	0.16	0.00	0.05	0.07	0.04	0.48	2.31	0.10		3.22			
	14	1.76	0.15	1.52	1.74	0.53	1.97	1.03	0.18	0.00	8.88			
	15	10.87	4.22	5.76	2.28	1.41	1.90	0.35	0.07	0.01	26.87			
	16	4.15	8.39	5.43	1.37	1.16	1.03	0.09	0.02	0.01	21.65			
	17	1.66	5.61	3.98	0.63	0.50	0.44	0.04	0.01	0.00	12.87			
	18	0.73	5.37	2.22	0.26	0.25	0.14	0.01	0.00	0.00	8.97			
	20	0.29	3.45	1.05	0.03	0.14	0.00	0.02	0.00	0.00	4 93			
	21	0.19	1.82	0.56	0.01	0.02	0.01	0.00	0.00	0.00	2.61			
	22	0.09	1.09	0.18	0.01	0.01	0.00	0.00	0.00	0.00	1.37			
	23	0.04	0.64	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.74			
	24	0.02	0.23	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.26			
	25	0.01	0.14	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.16			
	20 27	0.01	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	28	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03			
	29	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01			
	30	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01			
	31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	33 533	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	Total	20.70	35.51	22.51	6.49	4.11	6.08	4.19	0.38	0.02	100.00			
nP		Normal (line	ear) Paraffins	5										
iso	Р	Iso (branch	ed) Paraffins	6										
	J	Di-Naphthenic	S nice											
Mo	Ar	Mono-Arom	nes											
Nm	noAr	Naphthenic	-mono-Arom	natics										
DiA	٨r	Di-Aromatic	s											
Nd	iAr	Naphthenic	-di-Aromatic	S										
Tri/	Ar	Tri-Aromatio	CS											

Middle-distillate exhaustive analysis report

CON 12 (VHGO)

Middle-distillate exhaustive analysis report													
								-					
TASE Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH			Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 ms@Shell.c	<u>com</u>	Job No: 30523 Sample: Concawe Sample 12 Date: 04-Mar-13 File: 2d01_2101r4 Analyzer ID: GCxGC01						
Results	All results are in % wt by means off the use of theoretical FID respons factors. These factors have been calculated through the ECN method as published by Sternberg et al. The factor used for <c5 and="" c4="" for="" is="" of="" that="">C30 is that of C30 Results reported as 0.00 should be read as <0.01</c5>												
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Total nP isoP N DiN	nP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	isoP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.29 0.58 1.24 1.33 2.69 1.24 1.33 2.69 1.25 0.99 0.65 0.55 0.39 0.28 0.10 0.07 0.04 0.02 0.01 0.07 0.04 0.02 0.10 0.09 0.55 0.39 0.28 0.10 0.09 0.65 0.55 0.39 0.28 0.10 0.09 0.65 0.55 0.39 0.28 0.10 0.07 0.04 0.02 0.01 0.09 0.55 0.39 0.28 0.10 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00 0.00 0.00 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00 0.00 0.09 0.55 0.39 0.28 0.10 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00 0.00 0.00 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00 0.00 0.00 0.00 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00 0.00 0.00 0.00 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.09 0.55 0.39 0.28 0.10 0.07 0.04 0.00	N 0.00 0.00 0.00 0.00 0.01 0.03 0.15 0.44 1.02 1.74 2.28 3.06 2.92 2.78 2.33 1.72 1.28 0.79 0.43 0.23 0.11 0.09 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	DiN 0.00 0.00 0.00 0.00 0.04 0.15 0.58 1.60 1.41 1.04 1.47 1.27 1.18 1.13 0.63 0.33 0.25 0.08 0.09 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.00	MoAr 0.00 0.00 0.00 0.00 0.01 0.03 0.11 0.26 0.50 1.21 1.08 1.41 1.23 1.16 0.98 0.70 0.50 0.23 0.16 0.07 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00	NmoAr 0.00 0.00 0.04 0.21 0.59 1.19 1.55 1.41 1.61 1.50 1.67 1.06 0.77 0.44 0.26 0.11 0.06 0.07 0.07 0.03 0.01 0.00 0.00 0.00 0.00 12.66	DiAr 0.00 0.13 0.73 1.35 1.44 1.08 0.96 1.20 0.93 0.64 0.51 0.45 0.33 0.12 0.06 0.01 0.01 0.01 0.00 0.00 0.00 0.00	NdiAr 0.04 0.18 0.37 0.67 0.39 0.55 0.43 0.19 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00	TriAr 0.00 0.09 0.32 0.38 0.32 0.09 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43 3.58 6.81 9.19 10.63 12.98 12.86 12.73 10.49 6.96 4.83 2.90 1.78 1.11 0.70 0.36 0.19 0.08 0.04 0.01 0.01 0.01 0.00 100.00			
NmoAr DiAr NdiAr TriAr	Naphthenic Di-Aromatic Naphthenic Tri-Aromatic	-mono-Arom s -di-Aromatic cs	atics s										

CON 13 (VHGO)

	-						-	,		-		
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	SE ell Global Solutions ell Technology Centre Thornton Box 1 ester 1 3SH			Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	<u>com</u>	Job No: 30523 Sample: Concawe Sample 13 Date: 06-Mar-13 File: 2d01_2101r7 Analyzer ID: GCxGC01					
Results	All results a factors have The factor o Results rep	are in % wt e been calcu used for <c5 ported as 0.0</c5 	by means of ulated throug 5 is that of C 00 should be	f the use of ph the ECN 4 and for >0 read as <0	theoretical method as C30 is that o .01	FID respon published b of C30	s factors. The y Sternberg	ese et al.				
C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total		
<5	0.00	0.00								0.00		
5	0.00	0.00	0.00							0.00		
6	0.00	0.00	0.00	0.00	0.00					0.00		
7	0.00	0.00	0.00	0.00	0.00					0.00		
o o	0.00	0.00	0.00	0.00	0.00					0.00		
0	0.00	0.00	0.00	0.00	0.00	0.00				0.00		
9	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00		
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00		
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.01		
12	0.00	0.00	0.01	0.01	0.00	0.01	0.02			0.05		
13	0.00	0.00	0.03	0.04	0.01	0.03	0.09	0.00		0.22		
14	0.02	0.01	0.09	0.16	0.05	0.13	0.12	0.05	0.00	0.62		
15	0.04	0.03	0.22	0.18	0.18	0.27	0.31	0.08	0.02	1.33		
16	0.08	0.07	0.41	0.29	0.29	0.36	0.36	0.34	0.17	2.37		
17	0.16	0.13	0.92	0.59	0.49	0.58	0.62	0.70	0.39	4.58		
18	0.28	0.27	1.35	0.71	0.72	0.94	0.69	0.67	0.28	5.92		
19	0.38	0.54	1.90	1.60	0.91	1 71	0.03	0.50	0.45	8 73		
20	0.30	0.34	2.17	1.00	0.51	1.71	0.74	0.30	0.40	0.15		
20	0.44	0.72	2.17	1.02	0.00	1.00	0.79	0.75	0.40	9.00		
21	0.48	0.61	2.42	1.84	0.67	1.39	0.91	0.46	0.28	9.06		
22	0.52	0.60	2.51	1.20	1.00	1.28	0.64	0.50	0.19	8.44		
23	0.53	0.72	2.28	1.24	0.63	1.12	0.73	0.40	0.10	7.75		
24	0.49	0.64	2.03	1.02	0.81	1.07	0.71	0.32	0.06	7.15		
25	0.46	0.76	1.82	1.30	0.59	1.02	0.44	0.26	0.05	6.70		
26	0.39	0.63	1.45	0.70	0.55	1.77	0.37	0.20	0.07	6.13		
27	0.32	0.43	1.21	0.66	0.33	1.97	0.52	0.38	0.05	5.87		
28	0.28	0.40	1.03	0.11	0.24	1.55	0.54	0.23	0.08	4.46		
29	0.21	0.34	0.84	0.15	0.30	1.08	0.39	0.36	0.22	3.89		
30	0.14	0.26	0.56	0.11	0.26	0.70	0.28	0.24	0.00	2.55		
31	0.12	0.22	0.52	0.06	0.34	0.42	0.16	0.10	0.00	1 93		
32	0.08	0.17	0.30	0.10	0.22	0.24	0.10	0.06	0.00	1.00		
32	0.06	0.17	0.12	0.05	0.22	0.13	0.03	0.00	0.00	0.80		
>33	0.09	0.40	0.12	0.18	0.22	0.09	0.00	0.00	0.00	1.13		
Total	5.56	8.12	24.37	13.82	9.89	19.17	9.57	6.60	2.90	100.00		
- D	Name I ()	n ==) D#										
nP · · · ·	Normal (lin	ear) Parattin	s									
ISOP	iso (branch	ed) Paratting	5									
N	Naphthenic	:S										
DiN	Di-Naphthe	nics										
MoAr	Mono-Aron	natics										
NmoAr	Naphthenic	-mono-Aron	natics									
DiAr	Di-Aromatio	CS										

Middle-distillate exhaustive analysis report

NdiAr

TriAr

Tri-Aromatics

Naphthenic-di-Aromatics

CON 14 (VHGO)

Middle-distillate exhaustive analysis report												
TASE			Analyst:	Carole.Ada	ms		Job No:	30634				
Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH		Phone: Fax: E-Mail:	+44 (0)151 +44 (0)151 <u>Carole.Ada</u>	373 5562 373 5220 ms@Shell.	<u>com</u>	Sample: Date: File: Analyzer ID:	Concawe S 27-March_1 2d01_2003r GCxGC01	ample 14 3 '2				
Results	All results are in % wt by means off the use of theoretical FID respons factors. These factors have been calculated through the ECN method as published by Sternberg et al. The factor used for <c5 and="" c4="" for="" is="" of="" that="">C30 is that of C30 Results reported as 0.00 should be read as <0.01</c5>											
C No.	nP	isoP	Ν	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total		
<5	0.00	0.00								0.00		
5	0.00	0.00	0.00	0.00	0.00					0.00		
0 7	0.00	0.00	0.00	0.00	0.00					0.00		
8	0.00	0.00	0.01	0.00	0.00					0.02		
9	0.00	0.01	0.10	0.03	0.04	0.02				0.20		
10	0.01	0.04	0.20	0.16	0.07	0.27	0.01			0.76		
11	0.03	0.09	0.36	0.42	0.18	0.93	0.08			2.09		
12	0.09	0.19	0.61	0.57	0.42	1.20	0.21	0.01		3.29		
13	0.20	0.43	1.08	0.86	0.73	1.47	0.48	0.22		5.46		
14	0.41	0.82	1.//	1.44	0.67	1.61	0.78	0.49	0.00	7.99		
15	0.69	1.32	2.60	1.16	0.96	1.54	0.51	0.51	0.02	9.33		
10	0.79	1.72	2.13	0.96	0.92	0.99	0.31	0.27	0.06	9.10		
18	0.98	2.11	2.98	0.45	0.77	0.57	0.22	0.07	0.03	8.17		
19	1.04	2.44	2.57	0.47	0.79	0.58	0.14	0.04	0.00	8.08		
20	1.08	2.20	2.93	0.32	0.63	0.40	0.08	0.01	0.00	7.66		
21	1.02	1.59	2.36	0.25	0.50	0.28	0.04	0.00	0.00	6.06		
22	0.93	1.84	2.25	0.26	0.45	0.10	0.04	0.00	0.00	5.89		
23	0.83	1.49	1.80	0.12	0.24	0.10	0.02	0.00	0.00	4.60		
24	0.75	1.34	1.22	0.09	0.22	0.04	0.01	0.00	0.00	3.67		
25	0.50	1.00	0.75	0.00	0.07	0.03	0.01	0.00	0.00	2.90		
20	0.45	0.54	0.75	0.02	0.02	0.00	0.01	0.00	0.00	2.23		
28	0.18	0.44	0.27	0.02	0.00	0.02	0.00	0.00	0.00	0.93		
29	0.10	0.30	0.19	0.02	0.00	0.01	0.00	0.00	0.00	0.62		
30	0.06	0.14	0.09	0.01	0.00	0.00	0.00	0.00	0.00	0.30		
31	0.03	0.07	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.14		
32	0.02	0.06	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.10		
33	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04		
34	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01		
Jo Total	11 49	23.01	31.45	8.59	8.76	11 52	3.26	1.73	0.00	100 00		
. otai	11.40	20.01	01.40	0.00	0.10	11.02	0.20		0.10	100.00		
nP	Normal (line	ear) Paraffins	5									
ISOP	Iso (branch	ed) Paraffins										
N DiN	Naphthenic	S										
DIN	Mone Areas	nics										
NmoAr	Naphthonia	mono Arom	atics									
DiAr	Di-Aromatic	-mono-Arom	aucs									
NdiAr	Naphthenic	-di-Aromatic	s									
TriAr	Tri-Aromatio	CS										

CON 15 (VHGO)

Middle-distillate exhaustive analysis report													
TASE Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH			Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.c</u>	<u>com</u>	Job No: 30523 Sample: Concawe Sample 15 Date: 05-Mar-13 File: 2d01_2101r5 Analyzer ID: GCxGC01						
Results	All results are in % wt by means off the use of theoretical FID respons factors. These factors have been calculated through the ECN method as published by Sternberg et al. The factor used for <c5 and="" c4="" for="" is="" of="" that="">C30 is that of C30 Results reported as 0.00 should be read as <0.01</c5>												
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 Total	nP 0.00 0.00 0.00 0.20 0.21 0.23 0.25 0.29 0.33 0.36 0.47 0.57 0.59 0.69 0.79 0.87 0.80 0.76 0.64 0.51 0.34 0.20 0.76 0.64 0.51 0.34 0.20 0.01 0.00 0.01 0.00	isoP 0.00 0.00 0.00 0.01 0.19 0.48 0.35 0.33 0.43 0.39 0.41 0.55 0.53 0.68 0.92 1.11 0.93 1.00 1.04 1.07 1.14 1.07 1.14 1.07 1.14 1.07 1.14 1.07 1.14 1.07 1.14 1.07 1.14 1.07 1.14 1.03 0.37 0.15 0.03 0.02 0.01	N 0.00 0.02 0.11 0.66 0.64 0.62 0.71 0.74 0.90 0.89 0.94 1.25 1.10 1.46 1.54 1.54 1.51 1.35 1.08 0.81 0.49 0.31 0.11 0.01 0.01 0.00 0.00 20.41	DiN 0.00 0.01 0.07 0.28 0.43 0.45 0.63 0.69 0.62 0.88 0.65 0.77 1.17 0.83 0.84 0.75 0.41 0.59 0.46 0.23 0.07 0.07 0.07 0.00 0.00 0.00 0.00 0.0	MoAr 0.00 0.00 0.10 0.64 0.45 0.40 0.41 0.52 0.75 0.07 0.06 0.00	NmoAr 0.02 0.23 0.59 0.84 1.05 1.22 1.20 1.16 1.32 1.22 1.58 1.55 1.65 1.39 1.11 0.85 0.45 0.53 0.44 0.19 0.05 0.00 0.00 0.00 0.00 0.00 0.00 18.63	DiAr 0.01 0.05 0.13 0.29 0.39 0.69 0.62 0.66 0.71 0.54 0.48 0.59 0.52 0.35 0.27 0.23 0.12 0.10 0.03 0.00 0.71 0.54 0.71 0.54 0.71 0.54 0.55 0.27 0.23 0.12 0.13 0.59 0.52 0.52 0.13 0.29 0.52 0.13 0.29 0.52 0.13 0.29 0.52 0.23 0.12 0.10 0.00	NdiAr 0.01 0.09 0.17 0.34 0.53 0.36 0.34 0.21 0.19 0.15 0.12 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00	TriAr 0.00 0.00 0.03 0.07 0.09 0.15 0.13 0.10 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.0	Total 0.00 0.00 0.02 0.24 1.78 2.28 2.68 3.09 3.94 4.60 5.13 5.37 6.55 6.11 7.39 8.11 7.42 8.06 6.77 5.90 5.36 4.16 2.64 1.39 0.74 0.18 0.05 0.03 0.01 100.00			
nP isoP N DiN MoAr NmoAr DiAr DiAr NdiAr TriAr	Normal (linear) Paraffins Iso (branched) Paraffins Naphthenics Di-Naphthenics Mono-Aromatics Naphthenic-mono-Aromatics Di-Aromatics Naphthenic-di-Aromatics Tri Aromatics												

CON 16(i) (VHGO)

Middle-distillate exhaustive analysis report

TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	oal Solutions nnology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 Carole.Ada	ims 373 5562 373 5220 ims@Shell.i	<u>com</u>	Job No: Sample: Date: File: Analyzer ID:	30591 Concawe S 22-Mar-13 2d01-1103r GCxGC01	ample 16(i) 6	
Results	All results a factors have The factor u Results rep	are in % wt l e been calcu used for <c5 ported as 0.0</c5 	by means of ilated throug i is that of C IO should be	ff the use of gh the ECN 4 and for >0 read as <0	theoretical method as C30 is that o .01	FID respon published b of C30	is factors. Th by Sternberg	ese et al.		
C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total
<5	0.00	0.00								0.00
5	0.00	0.00	0.00							0.00
6	0.00	0.00	0.02	0.00	0.00					0.02
1	0.02	0.01	0.09	0.00	0.03					0.16
o Q	0.15	0.09	0.54	0.05	0.59	0.03				1.41
10	1.20	1.59	1.40	0.31	1.02	0.05	0.07			7.01
11	1.40	1.32	1.58	0.84	0.84	0.66	0.23			7.04
12	1.53	1.10	1.73	0.84	0.72	1.01	0.32			7.25
13	1.59	1.37	1.80	1.11	0.72	1.14	0.35	0.02		8.10
14	1.60	1.45	1.86	1.12	0.55	1.08	0.38	0.08	0.00	8.12
15	1.56	1.26	1.76	0.78	0.60	0.95	0.29	0.18	0.02	7.41
16	1.37	1.54	1.58	0.48	0.56	0.69	0.26	0.16	0.04	6.68
17	1.37	0.96	1.73	0.51	0.60	0.74	0.33	0.08	0.05	6.37
18	1.21	1.21	1.48	0.39	0.56	0.50	0.26	0.11	0.02	5.74
19	1.16	1.60	1.40	0.50	0.60	0.60	0.21	0.04	0.03	6.14
20	1.05	1.41	1.39	0.48	0.48	0.42	0.15	0.02	0.00	5.42
21	0.93	0.91	1.09	0.37	0.43	0.40	0.09	0.01	0.00	4.25
22	0.00	0.00	1.00	0.21	0.37	0.30	0.12	0.01	0.00	3.50
23	0.00	0.70	0.60	0.20	0.20	0.25	0.05	0.00	0.00	2.30
24	0.33	0.55	0.36	0.10	0.20	0.13	0.02	0.00	0.00	1 72
26	0.30	0.42	0.30	0.09	0.09	0.14	0.01	0.00	0.00	1.36
27	0.20	0.26	0.17	0.07	0.02	0.10	0.00	0.00	0.00	0.82
28	0.12	0.18	0.10	0.03	0.00	0.00	0.00	0.00	0.00	0.43
29	0.08	0.12	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.26
30	0.04	0.06	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.13
31	0.02	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
32	0.01	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
33	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	21.09	20.06	24.80	9.39	11.02	9.54	3.21	0.72	0.16	100.00
nP	Normal (line	ear) Paraffin	5							
isoP	lso (branch	ed) Paraffins	3							
N	Naphthenic	s								
DiN	Di-Naphthe	nics								
MoAr	Mono-Arom	natics								
NmoAr	Naphthenic	-mono-Arom	natics							
DiAr	Di-Aromatio	s								
NdiAr	Naphthenic	-di-Aromatic	s							

NdiAr TriAr

Tri-Aromatics

CON 16(ii) (VHGO)

	I	Middle	e-dist	illate	exha	ustive	e ana	lysis	report		
TASE Shell Global Solutions Shell Technology Centre Thornton PO Box 1 Chester CH1 3SH			Analyst: Phone: Fax: E-Mail:	Analyst: Carole.Adams Phone: +44 (0)151 373 5562 Fax: +44 (0)151 373 5220 E-Mail: Carole.Adams@Shell.com Job No: 30591 Sample: Concawe Sample 16 (ii) Date: 21-Mar-13 File: 2d01_1103r5 Analyzer ID: GCxGC01							
Results	All results a factors have The factor u Results rep	are in % wt l e been calcu used for <c5 ported as 0.0</c5 	by means of ilated throug i is that of C IO should be	ff the use of gh the ECN 4 and for >(read as <0	theoretical method as C30 is that o .01	FID respons published by of C30	factors. Th Sternberg	ese et al.			
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >33	nP 0.00 0.00 0.01 0.04 0.16 0.32 0.61 0.81 1.23 1.68 2.30 1.94 2.06 1.87 1.59 1.33 1.02 0.75 0.53 0.75 0.53 0.37 0.24 0.14 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00	isoP 0.00 0.00 0.01 0.04 0.11 0.30 0.43 0.40 0.89 1.25 4.34 1.86 1.54 2.10 2.79 2.08 1.53 1.04 0.75 0.46 0.42 0.34 0.09 0.06 0.08 0.03 0.01 0.00 0.00 0.00	N 0.00 0.02 0.08 0.19 0.31 0.49 0.68 2.71 1.54 1.84 2.88 5.32 2.15 2.05 2.66 2.07 1.06 0.88 0.61 0.35 0.19 0.09 0.04 0.02 0.00 0.00 0.00 0.00 0.00	DiN 0.00 0.01 0.24 0.46 0.65 0.98 1.23 0.82 0.64 0.72 0.44 0.56 0.50 0.34 0.12 0.72 0.44 0.50 0.34 0.12 0.07 0.07 0.07 0.03 0.00 0.00 0.00 0.00	MoAr 0.00 0.02 0.09 0.24 0.32 0.41 0.47 0.59 0.65 0.86 0.76 0.78 0.75 0.72 0.56 0.40 0.29 0.17 0.09 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	NmoAr 0.01 0.14 0.52 0.93 1.20 1.25 1.17 0.87 0.89 0.69 0.66 0.42 0.39 0.25 0.13 0.06 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00	DiAr 0.00 0.05 0.21 0.36 0.46 0.34 0.31 0.44 0.25 0.16 0.14 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	NdiAr 0.02 0.09 0.17 0.19 0.07 0.07 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	TriAr 0.00 0.02 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00	Total 0.00 0.03 0.13 0.38 0.90 1.83 3.17 6.18 6.81 8.45 12.90 11.92 8.68 8.23 9.17 7.12 4.85 3.41 1.01 0.64 0.20 0.11 0.03 0.01 0.00 0.00 0.00	
Total nP isoP N DiN	19.12 Normal (line Iso (branch Naphthenic Di-Naphthe	22.96 ear) Paraffins ed) Paraffins s nics	28.25	8.09	8.26	9.64	2.92	0.67	0.10	100.00	

DiN MoAr Mono-Aromatics NmoAr Naphthenic-mono-Aromatics

DiAr Di-Aromatics Naphthenic-di-Aromatics

NdiAr TriAr Tri-Aromatics

CON 16(iii) (VHGO)

	I	Middle	e-dist	illate	exha	ustive	e ana	lysis	report	
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions nology Centr	e Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ams 373 5562 373 5220 ams@Shell.(com A	Job No: Sample: Date: File: Analyzer ID:	30591 Concawe S 22-Mar-13 2d01_1103i GCxGC01	ample 16 (iii) 7	
Results	All results a factors have The factor u Results rep	are in % wt l e been calcu used for <c5 vorted as 0.0</c5 	by means of Ilated throug 5 is that of C 10 should be	f the use of ph the ECN 4 and for > read as <0	theoretical method as C30 is that o).01	FID respons published by of C30	factors. Th Sternberg	ese et al.		
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	nP 0.00 0.00 0.01 0.01 0.04 0.08 0.15 0.22 0.36 0.52 0.64 0.52 0.64 0.71 0.89 1.00 1.21 1.35 1.45 1.45 1.47	isoP 0.00 0.00 0.01 0.02 0.05 0.12 0.19 0.24 0.40 0.55 0.61 0.75 0.63 0.91 1.34 1.48 1.04 1.13 1.27	N 0.00 0.01 0.07 0.13 0.16 0.24 0.30 0.41 0.56 0.74 0.87 0.97 1.33 1.37 1.54 1.81 1.66 1.85 1.80	DiN 0.00 0.00 0.03 0.11 0.24 0.29 0.44 0.60 0.44 0.43 0.43 0.44 0.53 0.75 0.66 0.53 0.44	MoAr 0.00 0.02 0.09 0.39 0.58 0.52 0.43 0.43 0.45 0.51 0.60 0.68 0.85 0.86 0.85 0.85 0.85 0.85	NmoAr 0.04 0.37 1.47 2.10 2.04 1.44 1.14 0.79 0.86 0.66 0.85 0.71 0.78 0.65 0.54	DiAr 0.01 0.19 0.55 0.90 1.07 0.69 0.71 0.79 0.64 0.45 0.39 0.33 0.35 0.20	NdiAr 0.17 0.53 0.87 0.81 0.39 0.49 0.18 0.22 0.08 0.09 0.04	TriAr 0.03 0.19 0.30 0.41 0.20 0.09 0.07 0.00 0.00 0.00 0.00	Total 0.00 0.02 0.10 0.26 0.70 1.52 3.06 4.25 5.35 5.87 5.90 5.92 6.33 6.40 7.04 7.65 6.81 6.91 6.31
24 25 26 27 28 29 30 31 32 33 >33 Total nP isoP N DiN MoAr	1.21 1.01 0.76 0.52 0.36 0.23 0.13 0.08 0.05 0.02 0.02 15.87 Normal (line Iso (branch Naphthenic Di-Naphthe Mono-Arom	1.11 1.00 0.98 0.66 0.55 0.34 0.21 0.13 0.09 0.05 0.06 15.91 ear) Paraffins s nics natics	1.39 0.95 0.88 0.50 0.34 0.25 0.15 0.08 0.04 0.02 0.00 20.43	0.21 0.39 0.30 0.22 0.14 0.07 0.04 0.00 0.00 0.00 0.00 7.70	0.61 0.49 0.29 0.11 0.05 0.01 0.00 0.00 0.00 0.00 0.00	0.40 0.29 0.45 0.39 0.21 0.12 0.00 0.00 0.00 0.00 0.00 16.29	0.22 0.13 0.13 0.08 0.04 0.02 0.00 0.00 0.00 0.00 0.00 7.87	0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.18 4.27 3.77 2.48 1.69 1.05 0.53 0.28 0.17 0.10 0.07 99.99

DiAr Di-Aromatics

NdiAr Naphthenic-di-Aromatics

TriAr Tri-Aromatics

CON 17 (VHGO)

	-							. ,	-	-
TASE Shell Glol Shell Tecl PO Box 1 Chester CH1 3SH	bal Solutions hnology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ms 373 5562 373 5220 <u>ms@Shell.</u>	com A	Job No: Sample: Date: File: Malyzer ID:	30591 Concawe 1 21-Mar-13 2d01_1103r GCxGC01	7 3	
Results	All results a factors have The factor u Results rep	are in % wt I e been calcu used for <c5 ported as 0.0</c5 	by means of Ilated throug is that of C IO should be	ff the use of gh the ECN 24 and for >(e read as <0	theoretical method as C30 is that o .01	FID respons published by of C30	factors. Th Sternberg	ese et al.		
C No.	nP	isoP	N	DiN	MoAr	NmoAr	DiAr	NdiAr	TriAr	Total
<5	0.00	0.00								0.00
5	0.00	0.00	0.00							0.00
6	0.01	0.00	0.01	0.00	0.00					0.02
(0.02	0.02	0.07	0.00	0.01					0.12
0	0.07	0.11	1.03	0.03	0.10	0.02				1.00
10	0.35	1 1/	1.31	0.22	0.31	0.02	0.01			J.1Z A 5A
11	0.46	1 16	1.03	1 19	0.49	0.10	0.05			5.55
12	0.80	1.38	1.99	1.28	0.59	0.61	0.10			6.75
13	0.83	1.64	2.09	1.30	0.65	0.74	0.17	0.01		7.43
14	0.82	1.78	2.07	1.21	0.65	0.79	0.25	0.04	0.00	7.60
15	0.88	1.74	2.19	0.94	0.86	0.63	0.19	0.06	0.00	7.49
16	0.80	1.97	2.10	0.79	0.78	0.70	0.14	0.05	0.02	7.36
17	0.77	1.72	2.30	0.83	0.77	0.62	0.17	0.04	0.02	7.24
18	0.71	2.02	2.26	0.43	0.72	0.46	0.12	0.02	0.01	6.75
19	0.64	2.14	1.93	0.72	0.71	0.44	0.12	0.01	0.00	6.71
20	0.60	2.18	2.27	0.58	0.64	0.28	0.09	0.01	0.00	6.65
21	0.61	1./1	2.01	0.43	0.44	0.25	0.09	0.00	0.00	5.54
22	0.60	1.56	1.94	0.18	0.39	0.09	0.10	0.00	0.00	4.87
23	0.55	1.72	0.82	0.09	0.24	0.06	0.05	0.00	0.00	4.19
24	0.42	1.01	0.02	0.02	0.00	0.04	0.01	0.00	0.00	1.67
26	0.09	0.69	0.00	0.03	0.00	0.02	0.00	0.00	0.00	1.07
27	0.05	0.32	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.45
28	0.02	0.16	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.22
29	0.01	0.10	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.14
30	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06
31	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
>33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	10.62	28.89	32.31	11.01	8.91	6.35	1.63	0.24	0.05	100.00
nP	Normal (line	ear) Paraffin	5							
isoP	Iso (branch	ed) Paraffins	;							
Ν	Naphthenic	s								

Middle-distillate exhaustive analysis report

 nP
 Normal (linear) Paraffins

 isoP
 Iso (branched) Paraffins

 N
 Naphthenics

 DiN
 Di-Naphthenics

 MoAr
 Mono-Aromatics

 NmoAr
 Naphthenic-mono-Aromatics

 DiAr
 Di-Aromatics

 DiAr
 Di-Aromatics

 DiAr
 Naphthenic-di-Aromatics

 DiAr
 Tri-Aromatics

CON 18 (VHGO)

	I	Middl	e-dist	illate	exha	ustive	e ana	lysis	repor	t
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions nology Centr	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 Carole.Ada	ams 373 5562 373 5220 ams@Shell.	com A	Job No: Sample: Date: File: Analyzer ID:	30591 Concawe S 21-Mar-13 2d01_1103 GCxGC01	ample 18 r4	
Results	All results a factors have The factor u Results rep	are in % wt e been calcu used for <c5 ported as 0.0</c5 	by means of ulated throug 5 is that of C 00 should be	ff the use of gh the ECN 4 and for > read as <0	theoretical method as C30 is that ().01	FID respons published by of C30	factors. The Sternberg	ese et al.		
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >33 Total	nP 0.00 0.01 0.02 0.03 0.05 0.10 0.13 0.17 0.23 0.31 0.38 0.45 0.54 0.65 0.82 1.16 1.95 2.85 2.39 1.68 0.91 0.36 0.91 0.36 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.0	isoP 0.00 0.00 0.02 0.04 0.06 0.12 0.13 0.14 0.22 0.28 0.33 0.51 0.45 0.73 1.01 1.44 1.41 2.30 2.77 2.65 1.91 1.56 0.46 0.23 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00	N 0.01 0.02 0.06 0.10 0.12 0.17 0.22 0.30 0.37 0.46 0.55 0.61 0.87 0.96 1.15 1.92 2.67 3.53 3.29 2.15 1.12 0.55 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00	DiN 0.00 0.01 0.03 0.08 0.13 0.23 0.28 0.21 0.21 0.21 0.27 0.21 0.43 0.70 0.88 1.05 0.71 0.38 0.38 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MoAr 0.00 0.01 0.02 0.06 0.09 0.10 0.12 0.16 0.17 0.29 0.33 0.46 0.57 0.91 1.36 2.28 2.81 2.24 1.60 0.85 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 0.17 0.29 0.33 0.46 0.57 0.91 1.36 2.28 2.81 2.24 1.60 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.12 0.16 0.57 0.91 1.36 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.17 0.91 1.36 0.22 0.00	NmoAr 0.00 0.01 0.05 0.11 0.19 0.24 0.29 0.26 0.39 0.38 0.59 0.82 1.30 1.41 1.10 0.69 0.32 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.12 0.00 0.00 0.32 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00	DiAr 0.00 0.04 0.11 0.18 0.26 0.18 0.25 0.37 0.43 0.70 0.85 1.58 2.16 1.75 1.13 0.35 0.03 0.00 0.03 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.04 0.11 0.25 0.37 0.43 0.70 0.85 1.58 2.16 1.75 1.13 0.35 0.00	NdiAr 0.01 0.03 0.09 0.18 0.17 0.35 0.30 0.41 0.28 0.33 0.17 0.10 0.02 0.00 0.28 0.33 0.17 0.35 0.30 0.28 0.33 0.17 0.10 0.28 0.00 0.00 0.00 0.10 0.28 0.00 0.00 0.00 0.10 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.28 0.000 0.00	TriAr 0.01 0.08 0.26 0.67 0.65 0.43 0.15 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total 0.00 0.01 0.04 0.11 0.20 0.31 0.58 0.80 1.11 1.57 2.03 2.40 3.05 4.18 4.93 6.34 8.81 12.48 16.44 14.41 10.39 5.87 2.96 0.66 0.26 0.05 0.01 0.00 0.00 0.00
nP isoP N DiN MoAr NmoAr DiAr	Normal (line Iso (branch Naphthenic Di-Naphthe Mono-Arom Naphthenic Di-Aromatic	ear) Paraffins ed) Paraffins s nics natics -mono-Arom cs	s atics							

NdiAr Naphthenic-di-Aromatics

TriAr Tri-Aromatics

CON 19 (VHGO)

	-				•		-	.,	P	-
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions inology Centi	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ims 373 5562 373 5220 ims@Shell.	com A	Job No: Sample: Date: File: Analyzer ID:	30591 Concawe \$ 21-Mar-13 2d01_1103 GCxGC01	Sample 19 2	
Results	All results a factors have The factor o Results rep	are in % wt k e been calcu used for <c5 ported as 0.0</c5 	by means of lated throug is that of C 0 should be	ff the use of gh the ECN 24 and for >0 9 read as <0	theoretical method as C30 is that (0.01	FID respons published by of C30	factors. The Sternberg	ese et al.		
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 32 33 33 Total	nP 0.00 0.00 0.00 0.01 0.06 0.22 0.74 1.60 2.16 2.30 2.21 1.92 1.62 1.30 1.00 0.76 0.53 0.31 0.16 0.53 0.31 0.16 0.08 0.04 0.02 0.01 0.01 0.02 0.01 0.02 0.01 1.00 0.74 1.00 0.75	isoP 0.00 0.00 0.00 0.01 0.03 0.11 0.25 0.62 1.19 1.51 1.38 1.64 1.16 1.18 1.15 0.87 0.56 0.39 0.31 0.14 0.09 0.31 0.14 0.09 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	N 0.00 0.02 0.05 0.13 0.35 0.81 1.55 2.17 2.49 2.42 2.18 2.05 1.56 1.55 1.37 0.81 0.53 0.30 0.11 0.05 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00	DiN 0.00 0.00 0.03 0.21 0.55 1.11 1.56 1.76 1.16 0.85 0.84 0.45 0.29 0.18 0.05 0.29 0.18 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00	MoAr 0.00 0.01 0.04 0.18 0.36 0.63 0.92 1.00 0.86 1.11 0.88 0.71 0.62 0.31 0.20 0.10 0.04 0.01 0.00	NmoAr 0.02 0.42 1.66 2.51 2.67 2.29 1.86 1.24 1.05 0.66 0.35 0.23 0.09 0.03 0.01 0.00	DiAr 0.06 0.74 1.78 1.86 1.77 1.02 0.85 0.82 0.52 0.24 0.14 0.03 0.02 0.00	NdiAr 0.32 0.77 0.95 1.19 0.26 0.15 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TriAr 0.20 0.56 0.49 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total 0.00 0.00 0.01 0.03 0.12 0.46 1.72 5.37 10.09 12.94 13.96 12.67 11.23 9.17 6.62 5.76 4.13 2.54 1.51 0.89 0.37 0.20 0.09 0.04 0.02 0.01 0.00
nP isoP N DiN MoAr	Normal (line Iso (branch Naphthenic Di-Naphthe Mono-Aron	ear) Paraffins ed) Paraffins s nics natics	5							

Middle-distillate exhaustive analysis report

NmoAr DiAr Naphthenic-mono-Aromatics Di-Aromatics NdiAr Naphthenic-di-Aromatics TriAr Tri-Aromatics

CON 20 (VHGO)

	I	Middle	e-dist	illate	exha	ustive	e ana	lysis	report	t
TASE Shell Glob Shell Tech PO Box 1 Chester CH1 3SH	al Solutions nology Centi	re Thornton	Analyst: Phone: Fax: E-Mail:	Carole.Ada +44 (0)151 +44 (0)151 <u>Carole.Ada</u>	ams 373 5562 373 5220 ams@Shell.	<u>com</u> A	Job No: Sample: Date: File: vnalyzer ID:	30523 Concawe S 06-Mar-13 2d01_2101 GCxGC01	ample 20 r6	
Results	All results a factors have The factor u Results rep	are in % wt l e been calcu used for <c5 ported as 0.0</c5 	by means of ilated throug is that of C 0 should be	ff the use of gh the ECN 24 and for >1 e read as <0	theoretical method as C30 is that ().01	FID respons published by of C30	factors. The Sternberg	ese et al.		
C No. <5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 >33 Total	nP 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.22 0.35 0.49 0.66 0.86 1.04 1.19 1.26 1.17 1.07 1.00 0.86 0.73 0.55 0.41 0.29 0.20 0.15 0.09 0.12 12.98 Normal (line	isoP 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.0	N 0.00 0.00 0.00 0.01 0.04 0.06 0.12 0.19 0.33 0.50 0.66 1.11 1.32 1.62 1.96 2.04 2.36 2.22 1.97 1.59 1.17 1.05 0.80 0.62 0.43 0.28 0.16 0.05 0.05 0.05 22.73	DiN 0.00 0.00 0.00 0.02 0.05 0.09 0.21 0.33 0.30 0.31 0.53 0.38 0.38 0.33 0.31 0.53 0.38 0.33 0.31 0.53 0.38 0.33 0.31 0.53 0.33 0.31 0.53 0.33 0.31 0.53 0.32 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.4	MoAr 0.00 0.00 0.01 0.03 0.02 0.05 0.08 0.15 0.31 0.45 0.58 0.68 1.00 1.04 1.11 1.34 0.91 1.07 0.85 0.83 0.41 0.38 0.33 0.21 0.22 0.19 0.12 0.06 12.41	NmoAr 0.00 0.02 0.06 0.14 0.26 0.35 0.33 0.49 0.64 0.81 0.84 0.85 0.83 0.79 0.83 0.79 0.83 0.79 0.83 0.79 0.74 0.73 0.91 0.62 0.45 0.20 0.12 0.06 1.179	DiAr 0.00 0.02 0.09 0.23 0.21 0.36 0.43 0.49 0.48 0.52 0.83 0.92 0.66 0.65 0.49 0.35 0.43 0.27 0.18 0.15 0.07 0.04 0.15 0.07 0.04 0.01 0.00 8.24	NdiAr 0.00 0.06 0.08 0.28 0.49 0.39 0.40 0.31 0.28 0.30 0.19 0.14 0.13 0.18 0.10 0.12 0.08 0.05 0.02 0.01 0.00 4.01	TriAr 0.00 0.02 0.18 0.38 0.35 0.32 0.46 0.28 0.16 0.06 0.05 0.03 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.09 0.00 0.00 0.00 2.47	Total 0.00 0.00 0.00 0.01 0.03 0.11 0.20 0.47 0.98 1.57 2.30 3.22 4.86 5.54 7.39 8.59 8.66 9.09 8.05 7.61 6.94 5.94 5.94 5.94 5.94 5.94 5.94 5.94 5
nP isoP N DiN MoAr NmoAr DiAr	Normal (line Iso (branch Naphthenic Di-Naphthe Mono-Arom Naphthenic Di-Aromatic	ear) Paraffins ed) Paraffins s nics natics -mono-Arom cs	s s natics							

NdiAr Naphthenic-di-Aromatics

TriAr Tri-Aromatics

APPENDIX 2 - EXAMPLE OF PHYSICAL DISTILLATION REPORT (SAMPLE 019 - LBPN)

tei	rtek Sun	bury Technology Co	entre	ITS Testing Services (UK) Ltd Sunbury Technology Centre Unit 'A' Shears Way Brooklands Close Sunbury-on-Thames Middlesex TW16 7EE Tel : 01932 73 2100 Fax : 01932 73 2113
To:	Stuart Forbes The European P Boulevard de So B-1160 Brussels Belgium	etroleum Refiners Association AISBL uverain 165	Report No. Date: Phoenix No. Order No. Quote No. Date Sample(s) Re	RT/CMS/11228_019_D86 01/12/2104 UK760-0017928 201410221 QT/SUN/14120 eceived 14/11/2014
<u>Met</u> atm Amb Baro	hod: ASTM/D86 ospheric pressur bient temperature ometric pressure	/ EN ISO 3405: "Petroleum produc e" e at time of measurement was 18.8 at time of measurement was 759.5	ts – Determinatior ී 9 mmHg	of distillation characteristics at
<u>Met</u> atm Amt Bar	<u>hod:</u> ASTM/D86 ospheric pressur pient temperature pmetric pressure	/ EN ISO 3405: "Petroleum produc e" e at time of measurement was 18.8 at time of measurement was 759.5	tts – Determinatior ℃ i9 mmHg	of distillation characteristics at
<u>Met</u> Amt Bar	<u>hod:</u> ASTM/D86 ospheric pressur pient temperature pmetric pressure	/ EN ISO 3405: "Petroleum produc e" e at time of measurement was 18.8 at time of measurement was 759.5	ts – Determinatior ℃ i9 mmHg	of distillation characteristics at

UKAS TESTING 1049

<u>Its:</u>		
ANALYSIS by D86	RESULTS	UNITS
D86 Initial Boiling Point	83.7	C
D86 05 % Recovered	93.3	C
D86 10 % Recovered	95.4	C
D86 20 % Recovered	98.2	C
D86 30 % Recovered	101.0	C
D86 40 % Recovered	104.3	C
D86 50 % Recovered	107.8	C
D86 60 % Recovered	111.9	C
D86 70 % Recovered	116.4	C
D86 80 % Recovered	121.9	C
D86 90 % Recovered	129.2	C
D86 95 % Recovered	134.0	C
D86 Final Boiling Point	147.2	C
D86 Corrected Recovery	99.1	% vol
D86 Combined Observed Recovery + Residue	99.8	% vol
sis has been carried out on a sub-sample of the sar test versions of all test methods. Nes will be disposed of after 1 month unless alterna	nple as received, independen tive arrangements have been	t of sampling procedure, us made in agreement with th
sis has been carried out on a sub-sample of the sar test versions of all test methods. bles will be disposed of after 1 month unless alterna mer.	nple as received, independen tive arrangements have been	t of sampling procedure, us made in agreement with th
sis has been carried out on a sub-sample of the sar test versions of all test methods. les will be disposed of after 1 month unless alterna mer.	nple as received, independen tive arrangements have been Checked By:	t of sampling procedure, us made in agreement with th Magu illough cal Specialist

APPENDIX 3 - EXAMPLE OF SIMDIS-GC REPORT (SAMPLE 023 - LBPN)

RT/CMS/11228_023_GC

BP Distri	butio	n table - I	Perce	n t			
R ecov ered	BP	Recovered	BP	Recovered	BP	Recovered	BP
v o1%	°C	v o1%	°C	v o1%	°C	v o 1%	°C
BP	25.5	30.0	36.0	60.0	69.5	90.0	93.5
5.0	29.0	35.0	57.0	65.0	70.0	95.0	98.5
10.0	29.5	40.0	57.5	70.0	71.0	FBP	111.5
15.0	35.5	45.0	59.0	75.0	81.5		
20.0	34.0	50.0	63.0	80.0	89.5		
25.0	34.5	55.0	65.5	85.0	91.0		

A carbon number distribution* was calculated from the data given in above using the CONCAWE guidelines recommending "the use of the boiling points of each carbon number of the normal paraffins to calculate the amount of product recovered at each temperature ". These values are given below.

Boiling Point / °C	Carbon number	Mass %
-42.0	C3	<0.1
-0.5	C4	0.2
36.1	C5	30.0
68.7	C6	29.2
98.4	C7	36.4
125.7	C8	4.2
151.0	C9	<0.1
174.1	C10	<0.1

Page 2 of 4

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Registered in England No. 1408264 Registered Office Academy Place 1-9 Brook Street Brentwood Essex CM14 5NQ

report no. 5/19

* Test not UKAS accredited

Analysis has been carried out on a sub-sample of the sample as received, independent of sampling procedure, using the latest versions of all test methods.

Samples will be disposed of after 1 month unless alternative arrangements have been made in agreement with the customer.

Reported By:

Sandra McCullough Senior Technical Specialist

Contact No.: +44(0)1932 732 123

Checked By: Kirsty Clark Technical Specialist

Page 4 of 4

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Registered in England No. 1408264 Registered Office Academy Place 1-9 Brook Street Brentwood Essex CM14 5NQ

APPENDIX 4 - EXAMPLE OF SIMDIS-GC REPORT (SAMPLE 049 - KEROSINE)

Sundury	Technology Co	entre	ITS Testing Services (UK) Ltd Sunbury Technology Centre Unit 'A' Shears Way Brooklands Close Sunbury-on-Thames Middlesex TW16 7EE Tel : 01932 73 2100 Fax : 01932 73 2113
To: Stuart Forbes The European Petroleum Boulevard de Souverain 1 B-1160 Brussels Belgium	Refiners Association AISBL 65	Report No. Date: Phoenix No. Order No. Quote No. Date Sample(s)	RT/CMS/11228_049_GC 09/12/2104 UK760-0017928 201410221 QT/SUN/14I20 Received 14/11/2014
	<u>ASTM D2887 A</u>	nalysis Repo	<u>rt</u>
Sample Number Lab Sample No.	049 CMS-268130		
Test Method – ASTM D288 Fractions by Gas Chromatog	7 <u>*</u> – "Standard Test Metho graphy."	od for Boiling Rar	nge Distribution of Petroleum
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below.	<u>7*</u> – "Standard Test Metho graphy." Agilent gas chromatograp	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below.	7 <u>*</u> – "Standard Test Metho graphy." Agilent gas chromatograp	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, °C	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, °C Final column temperature, °C	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350	od for Boiling Rar oh model 6890 ar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, °C Final column temperature, °C Program rate, °C/min	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, °C Final column temperature, °C Program rate, °C/min Injector temperature, °C	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, ℃ Final column temperature, ℃ Program rate, ℃/min Injector temperature, ℃	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
<u>Test Method – ASTM D288</u> Fractions by Gas Chromatog Analysis carried out using an below. <u>Gas Chromatograph Column length, m</u> <u>Column internal diameter, mm</u> <u>Column material</u> <u>Stationary phase</u> Film thickness, µm Initial oven temperature, °C Final column temperature, °C Final column temperature, °C Program rate, °C/min Injector temperature, °C <u>Detector temperature, °C</u>	7* – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 350 Helium	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
<u>Test Method – ASTM D288</u> Fractions by Gas Chromatog Analysis carried out using an below. <u>Gas Chromatograph</u> <u>Column length, m</u> <u>Column internal diameter, mm</u> <u>Column material</u> <u>Stationary phase</u> Film thickness, µm Initial oven temperature, °C Final column temperature, °C Final column temperature, °C Program rate, °C/min Injector temperature, °C Detector temperature, °C Carrier gas Carrier gas flow rate, ml/min	7* – "Standard Test Metho graphy." Agilent gas chromatograp 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 350 350 Helium 20.0	od for Boiling Rar	nge Distribution of Petroleum
<u>Test Method – ASTM D288</u> Fractions by Gas Chromatog Analysis carried out using an below. <u>Gas Chromatograph Column length, m</u> <u>Column internal diameter, mm</u> <u>Column material</u> <u>Stationary phase</u> Film thickness, µm Initial oven temperature, °C Final column temperature, °C Final column temperature, °C Program rate, °C/min Injector temperature, °C Detector temperature, °C Carrier gas Carrier gas flow rate, ml/min Sample size, µl	7* – "Standard Test Metho graphy." Agilent gas chromatograp 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 350 Helium 20.0 1	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, ℃ Final column temperature, ℃ Final column temperature, ℃ Program rate, ℃/min Injector temperature, ℃ Detector temperature, ℃ Carrier gas Carrier gas flow rate, ml/min Sample size, µl Sample concentration, %(m/m)	7* – "Standard Test Metho graphy." Agilent gas chromatograp 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 10 350 350 Helium 20.0 1 1	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, ℃ Final column temperature, ℃ Final column temperature, ℃ Final column temperature, ℃ Final column temperature, ℃ Program rate, ℃/min Injector temperature, ℃ Detector temperature, ℃ Carrier gas Carrier gas flow rate, ml/min Sample size, µl Sample concentration, %(m/m) Detector	7 [*] – "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 10 350 Helium 20.0 1 *10 FID	od for Boiling Rar	nge Distribution of Petroleum nd analysis conditions as set out
<u>Test Method – ASTM D288</u> Fractions by Gas Chromatog Analysis carried out using an below. <u>Gas Chromatograph</u> <u>Column length, m</u> <u>Column internal diameter, mm</u> <u>Column material</u> <u>Stationary phase</u> Film thickness, µm Initial oven temperature, °C Final column temperature, °C Final column temperature, °C <u>Program rate, °C/min</u> Injector temperature, °C <u>Detector temperature, °C</u> <u>Detector temperature, °C</u> <u>Carrier gas</u> <u>Carrier gas flow rate, ml/min</u> <u>Sample size, µl</u> <u>Sample concentration, %(m/m)</u> <u>Detector</u> <u>Software</u>	7* - "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 10 350 Helium 20.0 1 *10 FID Analytical Controls Simdis	bd for Boiling Ram wh model 6890 an whether the second se	nge Distribution of Petroleum
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column length, m Column internal diameter, mm Column material Stationary phase Film thickness, µm Initial oven temperature, ℃ Final column temperature, ℃ Final column temperature, ℃ Program rate, ℃/min Injector temperature, ℃ Detector temperature, ℃ Carrier gas Carrier gas flow rate, ml/min Sample size, µl Sample size, µl Sample concentration, %(m/m) Detector Software Reference standard Colling the formation Minic	7* - "Standard Test Metho graphy." Agilent gas chromatograp Agilent 6890 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 350 Helium 20.0 1 ~10 FID Analytical Controls Simdis ASTM Reference Gas Oil N	Version 7.2.0.0	nge Distribution of Petroleum nd analysis conditions as set out
Test Method – ASTM D288 Fractions by Gas Chromatog Analysis carried out using an below. Gas Chromatograph Column Inegh, m Column material Stationary phase Film thickness, µm Initial oven temperature, ℃ Final column temperature, ℃ Final column temperature, ℃ Program rate, ℃/min Injector temperature, ℃ Detector temperature, ℃ Carrier gas Carrier gas flow rate, ml/min Sample size, µl Sample size, µl Sample concentration, %(m/m) Detector Software Reference standard Calibration Mix	7* - "Standard Test Metho graphy." Agilent gas chromatograp 10 0.53 HP-1 Methyl silicone 2.65 35 350 10 350 350 Helium 20.0 1 ~10 FID Analytical Controls Simdis ASTM Reference Gas Oil N ASTM® D2887 Calibration	od for Boiling Ran oh model 6890 an under the second secon	nge Distribution of Petroleum nd analysis conditions as set out

RT/CMS/11228_049_GC

BP Distribution table - Percent									
Recovered	BP	Recovered	BP	Recovered	BP	Recovered	BP		
mass%	° C	m a.ss %	°C	mass%	°C	mass%	° C		
BР	101.0	30.0	174.0	60.0	199.D	90.0	232.5		
5.D	141.5	35.0	177.0	65.0	203.5	95.0	240.5		
10.0	153.0	40.0	181.5	70.0	209.5	FBP	265.0		
15.D	160.0	45.0	186.5	75.0	215.5				
20.D	165.5	50.0	191.5	80.0	218.5				
25.0	169.5	55.0	196.0	85.0	225.5				

A carbon number distribution* was calculated from the data given in above using the CONCAWE guidelines recommending "the use of the boiling points of each carbon number of the normal paraffins to calculate the amount of product recovered at each temperature ". These values are given below.

Boiling Point / °C	Carbon number	Mass %
36	C5	<0.1
69	C6	<0.1
98	C7	0.4
126	C8	1.9
151	C9	6.4
174	C10	22.3
196	C11	25.1
216	C12	20.9
235	C13	14.6
254	C14	6.9
271	C15	1.2
287	C16	0.1
302	C17	<0.1
316	C18	<0.1
330	C19	<0.1
344	C20	<0.1
356	C21	<0.1
369	C22	<0.1
380	C23	<0.1
391	C24	<0.1
402	C25	<0.1

Page 2 of 4

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to

the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Registered in England No. 1408264 No. 1408264 Registered Office Academy Place 1-9 Brook Street Brentwood Essex CM14 5NQ

APPENDIX 5 - EXAMPLE OF SIMDIS-GC REPORT (SAMPLE 121 - CGO)

eni	eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione Va.f. Mariana, 26 20077 San Donato Mianese Mi	
	EXTERNAL TEST RE	PORT Nº 0955LB
CUSTOMER		
Name : AISBL	- CONCAWE Division	
Address: Boulev B-116	vard de Souverain, 165 0 Brussels - Belgium	
PRODUCT: SAN	IPLE_121	
SAMPLED BY: \$	Sample Coordination Laboratory	
Identification : LI	MS 200340944 Ibmission ID_100285974	
Sample arrival da	ate: February 13 th , 2015	
		Test starting date: February 17th , 2015
		Test completion date: February 19 th , 2015
	2000001 0	Deve de da

eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione

Via F. Maricano, 25 20097 San Donato Milanese Hi

TEST	METHOD	Unit of measure	RESULT	Note
Boiling Range Distribution of Petroleum Fractions by Gas Chromatography I.B.P. (0,5% m/m, mass recovered) 5 (%m/m) 10 (%m/m) 10 (%m/m) 20 (%m/m) 20 (%m/m) 20 (%m/m) 30 (%m/m) 30 (%m/m) 35 (%m/m) 30 (%m/m) 35 (%m/m) 55 (%m/m) 56 (%m/m) 40 (%m/m) 56 (%m/m) 50 (%m/m) 60 (%m/m) 60 (%m/m) 65 (%m/m) 70 (%m/m) 85 (%m/m) 80 (%m/m) 80 (%m/m) 90 (%m/m) 95 (%m/m) 90 (%m/m) 95 (%m/m)	ASTM D2887 - 14	°C	120.0 151.5 166.0 175.5 188.0 210.5 221.0 234.0 244.5 255.0 266.5 277.5 288.5 302.0 313.5 326.5 342.0 358.6 381.5 426.0	Note 1
Carbon Number Range by Simulated				Note 2
Boiling Point Distribution Plot				Note 3

EXTERNAL TEST REPORT Nº 0955LB

Note 1: The complete collection of Boiling Point (*C) at 1% intervals between 1 and 99 %m/m is reported on page 1 of Attachment n°1. The list of experimental data as required by Concawe is reported in Worksheet Boiling Point_Carbon Number Ranges.xls.

Note 2: The Carbon Number Range by SimDist ASTM D2887 is in Attachment n°2. The Carbon Number Distribution as recovered %mass is reported in Worksheet Boiling Point_Carbon Number Ranges.xls as required by Concawe.

Note 3: The Boiling Point Distribution Plot is in Attachment n°1

Attachment 5d PGCS0001 Rev. 13

Page 2 of 3

eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione Via P. Maritano, 26 20097 San Donato Milanese MI EXTERNAL TEST REPORT Nº 0955LB The present test report must not be partially reproduced or diffused without written approval of Centro di Sperimentazione. All data in this report refer only to the sample which has been submitted for testing. Issue date: March 4th, 2015 SUPERVISOR MANAGING DIFECTOR Patrizia Ruggieri Paolo Pollesel Stine Rugger ento o M Attachment 5d PGCS0001 Rev. 13 Page 3 of 3

	AC Sizedis remiin 04/19/001	HOWNENT NO	4
Instrument 1 AS	STM D 2887	eni	1
Sample name	: 200340944	Instrument	: 1
Method name	: C:\HPCHEM\I\METHODS\D2887A.M	Vial	:11
Sample type	: ASTM D 2887 Sample	Injection	:1
Sequence name	: 17FEBB15.8	Seq. line	: 13
Operator	: avanti	Sample (g)	: 0.0000
Acquired on	: 2/17/2015 10:40:19 PM	Solvent (g)	: 0,0000
Processed on	: 2/18/2015 11:35:48 AM	ISTD (g)	: 0.0000
Data File	: 17FEB15/011F1301.D/FID1A.CH	Start Elution	: 0.60
Blank used	: 17FEB15\001F1101.D\FID1A.CH	End Elution	: 24.05
BP Calibrant	: 17FEB15\002F0201.D\FID1A.CH		
Last Reference sample n 121	: 17FEB15\003F0301.D\FID1A.CH On spec.		

Boiling point distribution:

Mass9	& BP(°C)	Mass9	6BP(°C)	Mass?	6 BP(°C)	Mass%	6 BP(°C)	Mass?	6 BP(°C)
IBP	120.0	21	190.0	42	237.0	63	285.5	84	338.5
1	129.0	22	193.0	43	238.5	64	287.5	85	342.0
2	139.5	23	195.5	44	241.5	65	288.5	86	345.0
3	143.5	24	196.5	45	244.5	66	291.5	87	347.5
4	149.0	25	198.0	46	247.0	67	294.5	88	352.0
5	151,5	26	200.5	47	249.5	68	296.5	89	356.0
6	155.5	27	203.0	48	252.0	69	299.5	90	358.5
7	159.5	28	205.5	49	254.0	70	302.0	91	363.0
8	162.0	29	208.0	50	255.0	71	303.5	92	367.5
9	164.0	30	210.5	51	256.5	72	305.0	93	371.0
10	166.0	31	213.0	52	259.5	73	308.0	94	376.5
11	168.0	32	215.5	-53	262.0	74	310.5	95	381.5
12	170.0	33	217.0	54	264.5	75	313.5	96	388.0
13	172.5	34	218.5	55	266.5	76	316.0	97	394.5
14	174.5	35	221.0	56	269.0	77	318.0	98	403.0
15	175.5	36	224.0	57	271.0	78	320.0	99	416.0
16	178.0	37	226.5	58	272.5	79	323.5	FBP	426.0
17	181.0	38	229.0	59	274.5	80	326.5		
18	183.0	39	231.5	60	277.5	81	330.0		
19	185.5	40	234.0	61	280.0	82	332.0		
20	188.0	41	235.5	62	282.5	83	334.5		

APPENDIX 6 - EXAMPLE OF SIMDIS-GC REPORT (SAMPLE 058 - HFO)

eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione Via F. Maritano, 26 20097 San Donato Milanese MI EXTERNAL TEST REPORT N°0929LB CUSTOMER Name : AISBL - CONCAWE Division Address: Boulevard de Souverain, 165 B-1160 Brussels - Belgium PRODUCT: Sample_058 SAMPLED BY: Sample Coordination Laboratory Identification : LIMS 200338530 Submission ID 100285974 Sample arrival date: December 2nd, 2014 Test starting date: December 10th, 2014 Test completion date: December 11th, 2014

Attachment 5d PGCS0001 Rev. 13

Page 1 of 3

eni S.p.A Dowstream Ra Dowstream Laboratorie in San Donato Milanese Centro di Sperimentazio Via F. Maritano, 26 20097 San Donato Milanese MI	&D ss one			
EXTERNAL	. TEST REPORT	1°0929LB		
TEST	METHOD	Unit of measure	RESULT	Note
Determination of Boiling Range Distribution by Gas Chromatography Method – Part 2: Heavy Distillates and Residual Fuels I.B.P. (0,5% m/m, mass recovered) 5 (%m/m) 10 (%m/m) 15 (%m/m) 20 (%m/m) 25 (%m/m) 30 (%m/m) 35 (%m/m) 40 (%m/m) 50 (%m/m) 55 (%m/m) 60 (%m/m) 65 (%m/m) 70 (%m/m) 75 (%m/m) 80 (%m/m) 85 (%m/m) 85 (%m/m) 90 (%m/m) 95 (%m/m) 95 (%m/m) F.B.P. (99,5%m/m) Carbon Number Range by Simulated	EN 15199-2:2006	°C	198 246 277 303 326 346 36 380 394 407 419 429 440 450 461 473 435 500 518 544 606	Note 1
Boiling Point Distribution Plot				Note 3

reported in Worksheet Boiling Point_Carbon Number Ranges.xls. Note 2: The Carbon Number Range by SimDist EN 15199-2 is in Attachment n°2. The Carbon

Number Distribution as recovered %mass is reported in Worksheet Boiling Point_Carbon Number Ranges.xls as required by Concawe.

Note 3: The Boiling Point Distribution Plot is in Attachment n°1

Attachment 5d PGCS0001 Rev. 13

eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione Via F. Maritano, 26 20097 San Donato Milanese MI EXTERNAL TEST REPORT N°0929LB The present test report must not be partially reproduced or diffused without written approval of Centro di Sperimentazione. All data in this report refer only to the sample which has been submitted for testing. Issue date: December 22nd, 2014 SUPERVISOR MANAGING DIRECTOR Paolo Pollesel Alessandro Bonini ABouini Attachment 5d PGCS0001 Rev. 13 Page 3 of 3

SIMDIS	ASTN	1 High ten	nperat	ure			
Sample na Acquired o Processed Sample typ Method na Operator Sequence n	me on on oe me aame	: 20033853 : 12/10/201 : 12/10/201 : EN15199 : 15199-2 : avanti : C:\CHEM	80 14 2:51:0 14 10:15 132\2\SH	08 AM 5:56 AM EQUENCE\0	9DIC14	Vial Injection Sample (g) Solvent (g) ISTD (g) ISTD (g)	: 107 : 1 : 0.2290 : 11.2140 : 0.0000 : SAMPLE N. 058
Data File		: 09DIC14	107F18	01.D\			
General	Variał	oles					
Used BP c: Used Refer Used Start Used End o Total area Used Reco Found Rec Response f	alibrant rence elution (elution (very overy actor	09 09 (min) 0. min) 36 37 10 10 5.	Odic14\1 Odic14\1 150 5.240 78781 00.0 00.0 2076e-0	02F0201.D\ 03F0401.D\ 08			
BP Distr	ibutior	table - 1	Percen	t			
BP Distr Recovered mass% IBP	ibution BP °C 198.0	r table - F Recovered mass% 26.0	Percen BP °C 349.5	t Recovered mass% 52.0	BP ℃ 423.0	Recovered mass% 78.0	BP °C 480.0
BP Distr Recovered mass% IBP 1.0 2.0 3.0	BP °C 198.0 212.5 223.0 232.5	Recovered mass% 26.0 27.0 28.0 29.0	Percen BP °C 349.5 353.5 357.0 360.5	t Recovered mass% 52.0 53.0 54.0 55.0	BP °C 423.0 424.5 427.0 429.0	Recovered mass% 78.0 79.0 80.0 81.0	BP °C 480.0 482.5 485.0 488.0
BP Distr Recovered mass% IBP 1.0 2.0 3.0 4.0 5.0 6.0	BP °C 198.0 212.5 223.0 232.5 239.5 246.0 253.0	1 table - 1 Recovered mass% 26.0 27.0 28.0 29.0 30.0 31.0 32.0	Percen BP °C 349.5 353.5 357.0 360.5 364.0 367.5 370.5	t Recovered mass% 52.0 53.0 54.0 55.0 56.0 57.0 58.0	BP °C 423.0 424.5 427.0 429.0 431.0 433.0 435.0	Recovered mass% 78.0 79.0 80.0 81.0 82.0 83.0 84.0	BP °C 480.0 482.5 485.0 488.0 490.5 494.0 496.5
BP Distr. Recovered mass% IBP 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0	BP °C 198.0 212.5 223.0 232.5 239.5 246.0 253.0 259.0 265.5 271.0	r table - F Recovered mass % 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0	Percen BP °C 349.5 353.5 357.0 360.5 364.0 367.5 370.5 373.5 376.5 379.5	t Recovered mass% 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0	BP ℃C 423.0 424.5 427.0 429.0 431.0 433.0 435.0 437.5 439.5 439.5	Recovered mass% 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0	BP °C 480.0 482.5 485.0 488.0 490.5 494.0 496.5 499.5 502.5 506.0
BP Distr. Recovered mass% IBP 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0	BP °C 198.0 212.5 223.0 232.5 239.5 246.0 253.0 259.0 265.5 271.0 276.5 283.0 287.5	r table - H Recovered mass% 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0	Percen BP °C 349.5 353.5 357.0 360.5 364.0 367.5 370.5 382.0 382.0 385.0 382.0 385.0	t Recovered mass% 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0	BP ℃C 423.0 424.5 427.0 427.0 431.0 433.0 435.0 437.5 441.5 443.5 444.5 444.5 448.0	Recovered mass% 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0	BP °C 480.0 482.5 485.0 488.0 490.5 494.0 496.5 499.5 502.5 506.0 509.5 513.5 517.5
BP Distr. Recovered mass% IBP 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0	BP °C 198.0 212.5 223.0 232.5 239.5 246.0 253.0 259.0 265.5 271.0 276.5 283.0 287.5 293.0 299.0 303.0	table - I Recovered mass % 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0	Percen BP °C 349.5 353.5 357.0 360.5 364.0 367.5 370.5 370.5 373.5 376.5 379.5 382.0 385.0 385.0 391.0 393.5 396.5	t Recovered mass% 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 65.0 66.0 67.0	BP [●] C 423.0 424.5 427.0 429.0 431.0 433.0 435.0 437.5 441.5 441.5 443.5 444.0 448.0 448.0 450.0 452.0 454.5	Recovered mass% 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0	BP °C 480.0 482.5 485.0 488.0 490.5 494.0 499.5 502.5 506.0 509.5 513.5 517.5 522.0 526.5 532.0
BP Distr. Recovered mass% IBP 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	BP °C 198.0 212.5 223.0 232.5 239.5 246.0 253.0 259.0 265.5 271.0 276.5 283.0 287.5 293.0 299.0 303.0 308.0 313.0 317.0	table - I Recovered mass % 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0	Percen BP °C 349.5 353.5 357.0 360.5 364.0 367.5 370.5 370.5 373.5 370.5 382.0 390.5 390.5 390.5 390.0 402.0 402.0 402.0 402.0 402.0 402.0 402.0	t Recovered mass% 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 65.0 66.0 67.0 68.0 69.0 70.0	BP [●] C 423.0 424.5 427.0 429.0 431.0 433.0 435.0 437.5 441.5 443.5 444.5 444.0 450.0 454.5 456.5 459.0 461.0	Recovered mass% 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0	BP °C 480.0 482.5 485.0 488.0 490.5 494.0 496.5 499.5 502.5 506.0 509.5 513.5 517.5 522.0 526.5 532.0 537.5 534.0 551.0
BP Distr: Recovered mass% IBP 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	BP °C 198.0 212.5 223.0 232.5 239.5 246.0 253.0 259.0 265.5 271.0 276.5 283.0 287.5 293.0 299.0 303.0 308.0 313.0 317.0 321.5 326.0 330.0	table - H Recovered mass % 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0	Percen BP °C 349.5 353.5 357.0 360.5 364.0 367.5 370.5 390.0 400.5 390.0 400.5 390.0 400.5 390.0 400.5 390.0 400.5 390.0 400.5 400.5 390.0 400.5 400.5 390.0 400.5	t Recovered mass% 52.0 53.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0	BP ℃C 423.0 424.5 427.0 429.0 431.0 433.0 435.0 437.5 441.5 443.5 444.5 444.0 450.0 454.5 456.5 459.0 461.0 463.5 466.0 468.0	Recovered mass% 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0	BP °C 480.0 482.5 485.0 488.0 490.5 494.0 496.5 499.5 502.5 506.0 509.5 513.5 517.5 522.0 526.5 532.0 537.5 544.0 551.0 560.0 571.0 588.0

APPENDIX 7 - EXAMPLE OF DHA-GC AND PIONA-GC REPORT (SAMPLE 146 - LBPN)

eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione Via F. Maritano, 26 20097 San Donato Milar ese MI **EXTERNAL TEST REPORT N° 1122LB** CUSTOMER Name : AISBL - CONCAWE Division Address: Boulevard de Souverain, 165 B-1160 Brussels - Belgium PRODUCT: SAMPLE_146 SAMPLED BY: Sample Coordination Laboratory Identification : LIMS 200344213 Submission ID 100290324 Sample arrival date: May 5th, 2015 Test starting date: May 11th, 2015 Test completion date: June 4th, 2015 Page 1 of 3 Attachment 5d PGCS0001 Rev. 13

eni S.p.A Dowstream R&D Dowstream Laboratories in San Donato Milanese Centro di Sperimentazione

Via F. Maritano, 26 20097 San Donato Milanese Mi

EXTERNAL TEST REPORT Nº 1122LB

TEST	METHOD	Unit of measure	RESULT	Note
Determination of Individual Components in Spark Ignition Engine Fuels by 100-metre Capillary (with Precolumn) High Resolution Gas Chromatography	ASTM D6730-01 (R2011)			
Individual Components		% m/m :	*	Note 1
Group Type: n-paraffins Isoparaffins Olefins Naphthenes Aromatics Total Unknowns		% m/m % m/m % m/m % m/m % m/m % m/m	2.063 17.962 3.227 11.832 62.119 2.714	Note 2
Liquid Petroleum Products – Determination of Hydrocarbon Types and Oxygenates in automotive-motor gasoline and in ethanol (E85) automotive fuels – Multidimensional gas chromatography method. Saturates (normal+iso paraffins) Olefins	EN ISO 22854 : 2014	% m/m % m/m	19.7 8.9	Note 3
Aromatics Benzene		% m/m % m/m	52.9	

Note 1: The concentration of each component as mass % and vol %, to the nearest 0.001% (m/m) is reported on Attachment N°1.

The chromatogram of the sample with the entire collection of the peaks eluted is on Attachment N°2. As required by Concawe, the list of all experimental data is reported on the Excel spreadsheet 'Individual Hydrocarbons' while on the Excel spreadsheet 'Marker Compounds' are reported the three individual components n-exane, Benzene and Toluene.

Note 2: The individual component data have been grouped by summing the concentration of compounds in each particular group type such as paraffin, isoparaffin, olefin, aromatic, naphthenes, oxygenates and unknowns in % by mass and % by volume. All data are on Attachment N°3.

Attachment 5d PGCS0001 Rev. 13

Page 2 of 3

eni S.p.A Dowstream R&D **Dowstream Laboratories** in San Donato Milanese Centro di Sperimentazione Via F. Maritano, 26 20097 San Donato Milanese MI EXTERNAL TEST REPORT Nº 1122LB Note 3: The Reformulyzer results of hydrocarbon classes such as paraffins (normal + iso), olefins, aromatics, naphthenes and cyclo olefins, grouped per carbon number and expressed by % m/m and by % v/v, are on Attachment n°4. The chromatogram of the sample with the entire collection of the peaks eluted is on Attachment N°5. As required by Concawe, the list of Hydrocarbon Classes per Carbon Number is reported on the Excel spreadsheet. The present test report must not be partially reproduced or diffused without written approval of Centro di Sperimentazione. All data in this report refer only to the sample which has been submitted for testing. Issue date: July 21st, 2015 SUPERVISOR MANAGING DIRECTOR Patrizia Ruggieri Paolo Pollesel Stiss Ryper ado Attachment 5d PGCS0001 Rev. 13 Page 3 of 3

C Analytical Con	trols				ASTM D 6730 Cor
ic Analytical Coll	0.015				
ata File :	C:\CHEM32\1\DATA\1	2MAGG15DHA\207B3401.D			
Ised Calibration :	C:\CHEM32\1\DATA\1	2MAGG15DHA\20182801.D		-	
ample name :	200344213 SAMPLE 1	46		Seq. Line	# : 34
ate injection :	5/21/2015 2:14:32 PI	4		Vial #	: 207
ate report :	6/4/2015 4:30:17 PM			Inj	: 1
ample Type :	Reformate			Inj vol µl	: 0.1
equence name :	C:\CHEM32\1\SEQUE	CE,12MAGG15DHA.S		Peaks #	: 220 (250)
perator :	Admin				
ethod :	D6730				
-	Red av	0	Mass 05	Vol 85	Book Area
Time	Index con 7	Component	0.0056	0.0066	1.007
34.137	598.7	-heptene-3	0.0030	0.0087	1.265
34.364	700.2	e-heptane	0.0072	0.0137	1 968
35.948	708.8	c-neptene-z	0.0110	0.0127	2.063
37.465	716.6	029	0.0115	0.0132	£ 154
37.600	/1/.3	1c,2-dimetriyicyclopentane	0.0344	0.0367	0.134
38.127	720.0	2, z-dimethylnexane	0.0078	0.0092	2,371
39.796	728.2		0.0181	0.0217	3.100
40.005	729.2	ethylcyclopentane	0.0112	0.0121	2.011
40.371	730.9	2,2,3-trimethylpentane	0.0413	0.0476	7.270
41.494	736.1	037	0.0302	0.0340	5.409
42.313	739.8	038	0.0071	0.0080	1.280
42.853	742.3		0.0054	0.0065	0.951
43.045	743.1		0.0181	0.0215	3.173
43.226	743.9	1t,2c,3-trimethylcyclopentane	0.0165	0.0176	2.952
43.519	745.2	039	0.0058	0.0066	1.042
43.706	746.0		0.0079	0.0094	1.390
43.953	747.1	2,3,4-trimethylpentane	0.0830	0.0951	14.591
44.286	748.5	11	0.0290	0.0332	5.100
44.906	751.2	toluene	0.4651	0.4422	88.717
45.272	752.7	041	0.0217	0.0245	3.893
45.510	753.7	042	0.0066	0.0074	1.180
45.680	754.4	043	0.0189	0.0213	3.393
46.256	756.8		0.0830	0.0985	14.580
46.561	758.1	2,3-dimethylhexane	0.0064	0.0074	1.123
46.906	759.5	2-methyl-3-ethylpentane	0.0333	0.0385	5.848
47.248	760.9	1.1.2-trimethylcyclopentane	0.0851	0.0908	15.233
47.831	763.2	046	0.1553	0.1749	27.818
48 212	764.7	*2-ethylbecene-1	0.0558	0.0601	9.995
48,430	765.6	4-methylbeptage	0.0103	0.0120	1.810
40,450	766.1	3-methyl-3-ethyloentane	0.0128	0.0148	2.294
40.307	768.8	ic 2c 4-trimethylourionentane	0.1006	0.1088	18.013
40.258	700.0	1-methydhentane	0.1550	0.1810	27.247
49,510	771.0	ic 2t.3-trimethylowinnentane	0.1490	0.1594	26.674
50.101	772.0	server a mean reportention	0.0789	0.0932	13.861
50.291	772.8	1. athulheyano	0.0734	0.0848	12.908
50,603	774.0	15 A dimethyleschiouppo	0.0201	0.0217	3.601
50.830	774.8	1.2. octadiana	0.0201	0.0130	2.154
51.316	776.6	1,3-Octadiene	0.0120	0.0130	1 725
51.751	778.2	048	0.0096	0.0108	1.202
52.127	779.6	1,1-dimetry/cyclohexane	0.0067	0.0071	3 231
52,835	782.2	z,z,5-trimethylhexane	0.0212	0.0247	3.731
53.232	783.6	sc-ethylmethylcyclopentane	0.2116	0.2274	37.892
53.471	784.5		0.0234	0.0275	4.107
53.878	785.9	2,6-dimethylheptene-1	0.1437	0.1646	25.739
54.283	787.3	2t-ethylmethylcyclopentane	0.0917	0.0982	16.413
54.637	788.6	1,1-methylethylcyclopentane	0.0403	0.0426	7.221
55.229	790.6	2,2,4-trimethylhexane	0.0520	0.0580	9.167
55.787	792.6	1t,2-dimethylcyclohexane	0.2076	0.2205	37.170
		Dana 4 of 6			

C Analytical Contro	s				ASTM D 6730 Com
ata file : C:	CHEM32\1\DATA\1	2MAGG15DHA\20783401.D			
lsed Calibration : C:	CHEM32\1\DATA\1	2MAGG15DHA\20182801.D		for Line	e . 14
Sample name : 20	0344213 SAMPLE 1	46		Seq. Line	# : 34
Date injection : 5/	21/2015 2:14:32 PI	4		VRI W	. 1
hate report : 6/	4/2015 4:30:17 PM			This web ut	. 0.1
sample Type : Ro	formate	CRU2NICCITCHA C		Danke #	220 / 2501
sequence name : C:	CHEM32/1/SEQUE	VCE\12MAGG15DHA:S		Peaks #	, 220 (230)
Operator : Ad	min				
fethod : De	5730				
Time	Index	Component	Mass %	Vol %	Peak Area
56.285	794.2	c-octene-4	0.1054	0.1209	18.870
57.207	797.3	Lc,2c,3-trimethylcyclopentane	0.2312	0.2446	41.409
57.476	798.2	Lt,3-dimethylcyclohexane	0.0723	0.0768	12.947
58.066	800.2	n-octane	0.5758	0.6756	101.249
59.474	805.0	t-octene-2	0.1470	0.1684	26.323
59.951	806.6	12	0.3863	0.4362	68.072
60.508	808.5	2,4,4-trimethylhexane	0.1769	0.1972	31.161
61.287	811.0	052	0.0654	0.0749	11.704
61.814	812.7		0.0196	0.0229	3.446
62.307	814.3	c-octene-2 (053)	0.0647	0.0741	11.586
62.600	815.3	N1	0.0799	0.0844	14.299
63.186	817.2	2,2,3,4-tetramethylpentane	0.0551	0.0615	9.706
63.716	818.8	-	0.0238	0.0279	4.195
64.237	820.5	2,3,4-trimethylhexane	0.1152	0.1285	20.298
64,635	821.7	N2	0.0987	0.1043	17.672
64.938	822.6	N3	0.1482	0.1566	26.537
65.544	824.5	2,3,3-trimethylhexene-1	0.0139	0.0168	2.490
65.907	825.6	Lc,2-dimethylcyclohexane	0.1484	0.1537	26.581
66.426	827.2	2,3,5-trimethylhexane	0.1119	0.1277	19.712
66.834	828.4	2,2-dimethylheptane	0.1098	0.12/4	19.343
67.586	830.7	-	0.0379	0.0441	6.000
68.597	833.6	N4	0.3349	0.3539	59.962
69.131	835.2	2,2,3-trimethylhexane	0.0327	0.0377	31.548
69.633	836.6	2,4-dimethylneptane	0.1223	0.1403	12 168
70.015	837.7	4,4-dimethylheptane	0.0747	0.0001	54 250
70.860	840.2	Ethylcyclonexane	0.3030	0.0300	5.019
71.384	841.0	=1c,3c,5-trimetryicyclonexane	0.0250	0.0982	15.050
71.774	842.7	2,5-dimethylheptane	0.0004	0.4389	67.783
72,485	844.7	3,5-dimethylneptane	0.1242	0.1301	22.239
73.228	040.8	1,1,3-trimetrykyckonewane	0.2022	0.2348	35.581
/3.80/	846.3	NT	0.1725	0.1824	30,905
74,009	850.7	NR	0.0735	0.0778	13,180
75.025	051.0	8111	0.0901	0.0952	16.136
75.957	009.1	n	0.1095	0.1236	19,290
70,425	857.6	sthylbenzene	1.2894	1.2259	244.105
77,314	858.7	1c.2t.4t-trimethylourlobecane	0.2098	0.2217	37.567
77.069	850.3	14	0.1652	0.1865	29.110
77.906	860.6	2-methyloctene-1	0.0965	0.1165	17.275
70,450	862.2	2-methyloctene-2	0.1634	0.1974	29.269
79.000	863.3	N12	0.1024	0.1082	18.330
80.430	865.6	2.3-dimethylbeptane	0.1691	0.1920	29.799
81.052	867.1	1.3-dimethylbenzene	4.5126	4,3041	854.282
81.032	868 1	1.4-dimethylbenzene	2.0022	1.9168	379.032
92 319	870.2	N14	0.1581	0.1671	28.320
82.997	871.9	15	0.2605	0.2942	45.901
02.777	873.3	4-ethylheptane	0.3470	0.3971	61.138
26.6.30001					

C Analytical Cont	trols				ASTM D 6730 Con
Data File :	C:\CHEM32\1\DATA\1	2MAGG15DHA\20783401.D			
Jsed Calibration :	C:\CHEM32\1\DATA\1	2MAGG15DHA\201B2801.D			
Sample name :	200344213 SAMPLE 1	46		Seq. Line	# : 34
Date injection :	5/21/2015 2:14:32 Pt	1		Vial #	: 207
Date report :	6/4/2015 4:30:17 PM			Inj	: 1
Sample Type :	Reformate			Inj vol µl	: 0.1
Sequence name :	C:\CHEM32\1\SEQUE	VCE\12MAGG15DHA.S		Peaks #	; 220 (250)
Operator :	Admin				
Method :	D6730				
Time	Index	Component	Mass %	Vol %	Peak Area
84.393	875.2	W15	0.1570	0.1659	28.109
84.779	876.1	-methyloctane	0.4143	0.4742	145 500
85.160	877.0	2-methyloctane	0.8258	0.9541	145.502
85.510	877.9	Lc,2t,3-trimethylcyclohexane	0.1782	0.1938	31.910
85.918	878.8	3-ethylheptane	0.0122	0.10139	27.210
86.285	879.7	- Described and and	0.15/3	0.1815	50 169
86.872	881.0	3-methyloctane	0.2847	0.325/	130.009
87.319	882.1	Lc, 2t, 4c-trimethylcyclonexane	0.6702	0.7154	64 136
87.616	882.7	1,1,2-trimethylcyclohexane	0.3582	0.3090	36.807
88.122	883.9	.5	0.1521	2.0525	599 110
88.704	885.2	1,2-dimethylbenzene	3.1647	2.96.36	17 572
89.370	886.7	17	0.0997	0.1120	17.572
89.658	887.4	N18	0.1161	0.122/	40.074
90.294	888.8	nonene-1	0.2791	0.2994	49.974
90.525	889.3	18	0.2773	0.5131	40.002
90.987	890.3	N20	0.6239	0.0593	63.078
91.579	891.6	19	0.3360	0.4042	33,070
92.105	892.8	butyrcyclopentane	0.12.54	0.1303	97 759
92.437	893.5	N21	0.4901	0.4139	70.122
93.830	896.5	N22	0.3916	0.9138	51.465
94.418	897.8	t-nonene-3	0.2074	0.4011	62 590
94.850	898.7	110	0.3552	0.5174	20.361
95.479	900.0	n-nonane	0.4504	0.3174	62 511
95.693	901.2	L,1-methyletnykycionexane	0.3451	0.3309	67.080
96.383	904.9	125	0.3740	0.3500	48.015
96.735	906.8	-propyidenzene	0.1553	0.1630	27,800
97.899	913.1	N26	0.1555	0.1020	71 781
98.195	914.6	C-nonene-3	0.4005	0.2594	40.553
99.405	921.0	112 7.4 dimethylactors	0.2290	0.6744	104 931
100.184	925.1	2,4-dimethylocoline	0.0972	0.1014	17,404
100.760	978.1	3.6.dimethylactors	0.4540	0.5154	80.321
101.328	931.0	2.5-dimethyloctane	0.4675	0.5277	82.532
101.680	932.9	z, bubulauriosantano	0.2711	0.2848	48.538
102.401	936.5	1-butylcyclopentane N30	0.4373	0.4506	78.308
102.629	957.7	3.2.dimethylactana	0.6776	0.7559	119.636
103.577	942.5	5,5-cimenylociane	0.3984	0.4105	71.343
104.091	945.1	n-neo-udbaccane	1.0692	1,0224	201.110
104.526	947.3	2 6 dimethyloctage	0.2036	0.2279	35.945
104.781	940.5	1. method 5. stimbertane	0.2992	0.3396	52.831
104.985	969.6	5-meanyi-5-eanyinepane	0.2552	0.2612	45.391
105.377	951.5	122	0.1312	0.1493	23.144
105.902	954.1	2 mathedathudbastana	4 0020	4 6705	923.134
106.194	955.5	 a methodothylbenzene 	1 0501	1.7784	349.495
106.535	957.2	1/4-mechyleonylbenzerie	0.1148	0.1182	20.551
106.990	959.4	NJJ 5 2 E-tricosthulberger	2 2210	2 6026	513.847
107.687	962.8	2,3,5-0 machyoenzene	0.2051	0.3206	52.093
107.902	963.9	2,3-dimetriyloctane	0.2331	0.04.90	and the start of the start of the

AC Analytical Con	trols				ASTM D 6730 Comb
the strategy erear cost	CACHEMPOLIDATAL	2MB-CC15DHA) 20783401 D			
ata File :	C:\CHEM32\L\DATA\L	2MM2G15DHA(20783401.0			
sed Calibration :	CONTRACTOR CONTRACTOR	46		Sen. Line	# : 34
ample name :	200344215 SAMPLE 1	40		Vial #	: 207
ate injection :	5/21/2015 2:14:32 P	-		Ini	: 1
ate report :	0/4/2015 4:30:17 PM			Int vol ul	: 0.1
ample type :	CACHEMODALLCEOLIE	ICE 12MAGG15DHA 5		Peaks #	: 220 (250)
equence name :	C: (CHENG2 (1 (SEQUE	POL (12) POSSI SISTERIA			
iperator :	DE720				
ethod ;	50750				
Time	Index	Component	Mass %	Vol %	Peak Area
108.754	968.0	5-methylnonane	0.4465	0.5024	78.832
109.077	969.5	117	0.4870	0.5425	85.980
109,472	971.4	1,2-methylethylbenzene	2.2413	2.0977	421.574
109,911	973.5	2-methylnonane	0.2890	0.3279	51.018
110.109	974.5	3-ethyloctane	0.0978	0.1089	17.265
110.464	976.1	N35	0.2769	0.2853	49.587
110.737	977.4	3-methylnonane	0.7672	0.8623	135.452
110,934	978,4	N36	0.2184	0.2250	39.112
111.314	980,1	3-ethyl-2-methylheptene-2	0.2585	0.3039	46.298
111.844	982.6	t-butylberzene	0.1473	0.1401	27.703
112,260	984,6	1,2,4-trimethylbenzene	8.4321	7.9359	1.5860E+03
112,454	985.5	E20	0.1425	0.1588	25.163
112.672	986.5	i-butylcyclohexane	0.3074	0.3183	55.046
112.897	987.5	121	0.5378	0.5991	94.957
113.198	988,9	123	0.1618	0.1803	28.571
113.347	989.6	N37	0.1261	0.1299	22.580
113,622	990.9	decene-1	0.1758	0.1956	31.165
113,757	991.5	-	0.1646	0.1861	29.051
114.257	993.8	2.3-dimethyloctene-2	0.6333	0.7054	112.253
114,819	996.3	124	0.2951	0.3287	52.102
114.947	996.9	i-buty/benzene	0.2834	0.2738	53.015
115.162	997.9	125	0.2179	0.2427	38.473
115 326	998.6	sec-butylbenzene	0.2207	0.2111	41.295
115.627	1000.0	in-decane	0.6263	0.7072	110.574
116.131	1003.7	IN38	0.5669	0.5841	101.509
116,797	1008.7	1.2.3-trimethylbenzene	2.3485	2.1643	441.726
117.148	1011.3	IN39	0.4239	0.4368	75.915
117.422	1013.3	1.4-methyl-i-propylbenzene	0.1430	0.1375	26.747
117.625	1014.8	127	0.2001	0.2229	35.365
117.992	1017.4	128	0.0808	0.0900	14.281
118.143	1018.5	129	0.0586	0.0652	10.351
118,359	1020.1	-	0.1413	0.1589	24.952
118,555	1021.5	2-3-dihydroindene	1.8401	1.5734	351.763
118,950	1024.4	130	0.2363	0.2632	41.763
119,392	1027.6	1,2-methyl-i-propylbenzene	0.2471	0.2323	46.223
119,558	1028.8	3-ethylnonane	0.1289	0.1428	22.772
120.148	1033.0	N40	0.4682	0.4824	83.848
120.779	1037.5	131	0.4256	0.4740	75.211
121.126	1040.0	1,3-diethylbenzene	0.2000	0.1909	37.425
121.323	1041.4	1,3-methyl-n-propylbenzene	0.6252	0.5986	116.974
121.695	1044.1	1,4-diethylbenzene	1.5927	1.5229	297.971
122,231	1047.8	n-butylbenzene	0.6953	0.6656	130.079
122.389	1049.0	1,3-dimethyl-5-ethylbenzene	0.4100	0.3841	76.715
122,704	1051.2	1,2-diethylbenzene	1.5860	1.4857	296.716
177.995	1053.2	134	0.2890	0.3219	51.072
123,199	1054.6	t-decahydronaphthalene	0.2074	0.2137	37.135
123,556	1057.1	N41	0.3265	0.3364	58.466
-					

AC Analytical Controls					ASTM D 6730 Comb
ata File : C:\C	HEM32\1\DATA\1	2MAGG15DHA\207B3401.D			
used calibration : C:VC	HEMJ2\1\DATA\1	2FF-W0013DHA/20182801.D		Sec. Line	# : 34
Sample name : 2003	44213 SAMPLE 1	46		Vial #	207
Date injection : 5/21	2015 2:14:32 PT	4		Test	- 1
Date report : 6/4/	2015 4:30:17 PM		Tesi ved ut	0.1	
Sample Type : Kero	mate JEM12313CEOUE	CP 12MAGG15DHA 5		Peaks #	: 220 (250)
Sequence name : C. (c)	n occorrights	of free and a second second		10010-0	
Mothod D67	0				
	~				
Time	Index	Component	Mass %	Vol %	Peak Area
123.885	1059.4	135	0.7337	0.8173	63.444
124.329	1062.5	136	0.3515	0.3913	10 551
124.560	1064.1	137	0.1108	0.1232	49.347
124.759	1065.5	138	0.2767	0.1501	31.030
125.055	1067.5	5.3 1.4 dimethod. 2 athulhenzene	1.5732	1.4782	294.323
125.348	1071.2	3. 3-dimethyl-4-ethylbergene	1.5992	1.5338	299.188
125.598	1074.8	L40	0.4541	0.5058	80.248
126.110	1076.7	1.2-dimethyl-4-ethylbenzene	3.0189	2,8455	564.802
126.857	1079.8	141	0.1413	0.1574	24.972
127,239	1082.4	1.3-dimethyl-2-ethylbenzene	0.1708	0.1581	31.951
127.513	1084.3	142	0.0947	0.1054	16.730
127.728	1085.7	143	0.1155	0.1287	20.414
128.273	1089.4	undecene-1	0.0409	0.0450	7.331
128.464	1090.7	1,4-methyl-t-butylbenzene	0.2005	0.1944	37.350
128.829	1093.1	1,2-dimethyl-3-ethylbenzene	0.2904	0.2683	54.328
129.111	1095.0	1,2-ethyl-i-propylbenzene	0.6926	0.6415	129.036
129.859	1100.0	n-undecane	0.4034	0.4469	71.293
130.174	1102.8	1,4-ethyl-i-propylbenzene	0.0845	0.0783	15.742
130.643	1107.0	1,2-methyl-n-butylbenzene	1.0451	0.9679	194.692
131.100	1111.1	1,2,3,5-tetramethylbenzene	1.1402	1.0556	213.323
131.950	1118.6		0.1450	0.1602	25.625
132.103	1120.0	-	0.0756	0.0836	13.372
132.239	1121.2	1,2-methyl-t-butylbenzene	0.0656	0.0607	12.215
132.934	1127.3	-	0.0468	0.0517	8.269
133.262	1130.2	5-methylindan	1.6999	1.5744	318.035
133.876	1135.5	4-methylindan	0.2012	0.1863	37.634
134.016	1136.8	1,2-ethyl-n-propylbenzene	0.1316	0.1219	24.512
134.195	1138.3	2-methylindan	0.4510	0.4115	84.372
134.534	1141.3	1,3-di-i-propylbenzene	1.5107	1.3992	140.552
135.008	1145.3	s-pentylbenzene	0.8028	0.7430	24,000
135.378	1148.5	-	0.1363	0.1501	24.039
135.804	1152.2	n-pentylbenzene	0.5251	0.4663	30 180
136.132	1155.0	a,2-di-i-propyidenzene	0.2110	0.2163	34.738
136.258	1156.1		0.1903	0.1126	18.104
136,477	1150.0	1 A.d. Lowny Decreace	0.2320	0.2157	43.255
136.652	1159.5	a /- di-i-propyioenzenie	0.2223	0.1933	43.184
135.093	1163.1	-	0.1513	0.1664	26.763
127 524	1167.3	-	0.1577	0.1733	27.881
137.604	1168.7	1-t-butyl-3.5-dimethylbenzene	0.2638	0.2443	48.986
138 124	1172.0	naphthalene	0.6813	0.5477	133.445
138.323	1173.6	1.4-ethyl-t-butylbenzene	0.1359	0.1259	25.244
138.630	1176.2	145	0.2347	0.2569	43.730
139.130	1180.4	146	0.6679	0.7311	124.419
139.337	1182.2	47	0.3109	0.3403	57.918
139.831	1186.3	148	0.3727	0.4080	69.431
	200000				
		Page 5 of 6			
		i sille a se a			

		DHA Plus version 08.01.0	0		ACTM D 6720 Com	2
AC Analytical Con	ntrols				ASTR 0 6730 Com	ul
Data File :	C:\CHEM32\1\DATA\1	2MAGG15DHA\207B3401.D				
Used Calibration :	C:\CHEM32\1\DATA\1	2MAGG15DHA\201B2801.D				
Sample name :	200344213 SAMPLE 1	46		Seq. Line	# : 34	
Date injection :	5/21/2015 2:14:32 P	м .		Vial #	: 207	
Date report :	6/4/2015 4:30:17 PM			Inj	: 1	
Sample Type :	Reformate			Inj vol µl	: 0.1	
Sequence name :	C:\CHEM32\1\SEQUE	NCE\12MAGG15DHA.S		Peaks #	; 220 (250)	
Operator :	Admin					
Method :	D6730					-
		e	Magg Bi	Mal 86	Beak Area	
Time	Index 1100.0	1.3.dia.aspectbergete	0.6702	0.6207	124.451	
140.277	1100.0	1,3-di-ti-propyroenseile	0.1348	0.1248	25.026	
140.557	1200.0	16	0.2292	0.2123	42.562	
141.403	1200.0	70	0.0807	0.0883	14.287	
143.100	1210.5	-	0.0714	0.0780	12.627	
143,411	1225.8		0.1371	0.1499	24.255	
144.044	1225.0	1.2.4-triethylbergene	0.1107	0.1026	20.566	
144.270	1233.2	1211 Cite Cite City in the second	0.1297	0.1418	22.952	
145.771	1238.0		0.1345	0.1470	23.809	
145.271	1244.7	1.4-methyl-n-pentylbenzene	0.2213	0.2050	41.087	
147 388	1258.8	p-bezy/benzene	0.0731	0.0677	13.573	
148.168	1266.4	-	0.0360	0.0393	6.367	
149,285	1277.2	1.2.3.4.5-pentamethylbenzene	0.1014	0.0835	18.883	
150.264	1286.6	2-methylnaphthalene	0.1881	0.1520	36.557	
151.897	1302.2	-	0.0840	0.0915	14.875	
	5					
		Page 6 of 6				

AC Analytic	al Controls									_	ASTM	D 6730	Con
Data File Used Calibrat Sample name Date injection Date report Sample Type Sequence na Operator Method	: C:\CHEM32\1 ion : C:\CHEM32\1 2 : 200344213 S 1 : 5/21/2015 2: 2 : 6/4/2015 4: 3 : Reformate me : C:\CHEM32\1 2 : Admin 3 : D6730	\DATA\12M \DATA\12M AMPLE 146 14:32 PM 0:15 PM \SEQUENCI	AGG15D AGG15D E\12MAG	HA\207 HA\201 G15DH/	83401.D 82801.D				Se Via Inj Pes Sa IS De	q. Line i i vol pl aks # mple we TD weigi nsity	134 20 10.1 22 ight: 0 nt : 0 10	7 0 (250)	
					Heigh	t (pA)							
87	, 5 , 8 , 8	8 . 5	8	8	8	8	8	100	110	120	13 B	ŧ	- Ig
=	ethylcyclopentane 2,2,3-trimethylpenta	ne											
\$	037												-
4	038												
#	11.2e.3-trimelinyloyo	opentane											
â	toberte	anto											
÷	843												
5	2,3-dmethylhexane 2-methyl-3-ethylpen	tane											-
	0.45	pentane											1
43 Teteriño	S-Helligt statistion	tanè											1
n line	3-netwineptane	clopentane											1
2) SI	3-ethythexane 11,4-cimethytoyclohe	olarae											1
8	048 1,1-dimethykyckoher	xarie											
8	8,2,5-trimethylhexan 3c-ethylmethylayd	e Sopertane											
-	2,8-dmethy/hepter 21-ethy/methylcyclo	e-1 pentaria											
8	1,1-methyleithylcyck 2,2,4-trimetry/hexa	opentane Ne											
5	11,2-dmethylcycle	hexañe											
88	10,20,3-trimethylo	volopentana											
8	n-octane	in di											
_t	6					11	1	1	9		÷.	_	

107

		DHA F	1us version 08.01	.00	Atteching	ASTM D 6730 Combi
AC Analytical Con	trois					Partie or de sonnal
Data File : Jsed Calibration : Sample name : Date injection : Date report : Sequence name : Operator : Method :	C:\CHEM32\1\DATA\) C:\CHEM32\1\DATA\) 200344213 SAMPLE 1 S/21/2015 2:14:32 PI 6/4/2015 4:30:17 PM Reformate C:\CHEM32\1\SEQUE Admin D6730	2MA3G15DHA\20 2MA3G15DHA\20 46 4 NCE\12MAGG15DH	783401.D 182801.D 44.S		Seq. Line # Vial # Inj Inj vol µl Peaks #	: 34 : 207 : 1 : 0.1 : 220 (250)
		Com Tetal by group (in m	posite report type & carbon nu ass percent)	mber		
Carbon	n-Paraffins	Isoparaffins	Olefins	Naphthenes	Aromatics	Total
C7 C8 C9 C10 C11	0.007 0.576 0.450 0.626 0.403	0.452 5.559 6.665 3.699	0.071 0.532 1.515 1.068 0.041	0.046 2.592 5.068 2.700 1.219	0.465 10.969 25.684 16.461 3.649	0.589 15.121 38.277 27.519 9.011
C12 Total	2.063	1.586	3.227	0.207 11.832 Tot	4.890 62.119 al Oxygenates:	97.202
				т	Total Heavies: atal unknowns: Grand Total:	0.084 2.714 100.000
		Com Total by group (In vo	posite report type & carbon nu lume percent)	mber		
Carbon	n-Paralfins	Iscparaffins	Olefins	Naphthenes	Aromatics	Total
C7 C8 C9 C10 C11	0.009 0.676 0.517 0.707 0.447	0.524 6.327 7.483 4.120	0.081 0.601 1.752 1.205 0.045	0.051 2.747 5.336 2.783 1.256	0.442 10.410 24.096 15.513 3.378 4.407	0.583 14.958 38.032 27.692 9.245 6.357
C12 Total	2.356	20.190	3.685	0.214 12.386 To	58.249 tal Oxygenates: Total Heavies: otal unknowns:	96.866
					Grand Total:	100.000
			Page 1 of 1			

Ent		reform	ulyzer		200344213 5	SAMPLE 14	8	Eni
ata FileNar	ne	: C/H	PCHEM.1\D#	TA\D1505	13\SIG11271.	D		
perator		: Avar	ti Gianni					
cquired On		: 5/13	/2015 6:05:11	PM	Vial		1	103
rocessed O	10	: 5/13	/2015 6:05:10	PM	lnj V	/olume	: 0,	1 (61)
ample Nam	18	: 2003	344213 SAME	LE 146				
lampleGrou	p	: Wint	erspec MTBE					
iample Type	2	: : With	erspec MIB:					
Istrument M	lemoa	: with	eru i					
Analysis C	onditions		DhileCan	05				
	a.a a		OlefinSep1	90				
	2.5		OlefinSep2	145				
iample Dens	sity			-	828.3 kg/m*	3 (at 15 C°)		
formalized	l weight pe	rcent resul	Its					
C-nr	Naph.	Paraf.	Cycl OL	Olef.	Arom.	Oxyg.	Total	
1								
2								
3								
4				0.01			0.01	
5				0.01			0.01	
	0.07	0.01	0.21	0.01	0.42		0.75	
*	1.38	0.51	1.87	1.02	8.79		13.57	
	3.45	2.39	3.34	3.48	24.03		36.79	
10	3.17	3.57	2.19	4.33	13.67		26.93	
11+		13.18			6.01		19.19	
12+								
Poly	2.75						2.75	
Total	10.90	19.66	7.62	8,91	52,92		100.00	
		second root	ilta					
formalized	d volume pe	arcent test		Olef.	Arom.	Oxyg.	Total	
formalized C-nr	d volume pe Naph.	Paral.	Cycl OL					
C-nr 1	d volume pe Naph.	Paraf.	Cycl OL					
C-nr 1 2	d volume pe Naph.	Paraf.	Cycl OL				×	
C-nr 1 2 3	d volume pe Naph.	Paraf.	Cycl OL	0.01			. 0.01	
C-nr 1 2 3 4 5	l volume pe Naph.	Paral.	Cycl OL	0.01			0.01	
C-nr 1 2 3 4 5 6	l volume pe	Paraf.	Cycl OL	0.01			0.01 0.02 0.02	
C-nr 1 2 3 4 5 6 7	0.07	Paraf.	Cycl OL 0.22	0.01 0.02 0.02 0.04	0.40		0.01 0.02 0.02 0.75	
C-nr 1 2 3 4 5 6 7 8	0.07 1.48	0.01 0.60	0.22 1.92	0.01 0.02 0.02 0.04 1.17	0.40		0.01 0.02 0.02 0.75 13.51	
C-nr 1 2 3 4 5 6 7 8 9	0.07 1.48 3.71	0.01 0.60 2.72	0.22 1.82 3.41	0.01 0.02 0.02 0.04 1.17 3.91	0.40 8.35 22.87		0.01 0.02 0.02 0.75 13.51 35.41	
C-nr 1 2 3 4 5 6 7 8 9 10	0.07 1.48 3.71 3.23	0.01 0.60 2.72 4.03	0.22 1.82 3.41 2.22	0.01 0.02 0.04 1.17 3.91 4.79	0.40 8.35 22.67 12.68		0.01 0.02 0.02 0.75 13.51 36.41 26.95	
lormalized C-nr 1 2 3 4 5 6 7 8 9 10 11+ 1+	0.07 1.48 3.71 3.23	0.01 0.60 2.72 4.03 14.22	0.22 1.82 3.41 2.22	0.01 0.02 0.02 0.04 1.17 3.91 4.79	0.40 8.35 22.67 12.68 5.56		0.01 0.02 0.02 0.75 13.51 36.41 26.95 18.79	
Cerralized Cerr 1 2 3 4 5 6 6 7 8 9 10 11+ 12+ 8 8	0.07 1.46 3.71 3.23	0.01 0.60 2.72 4.03 14.22	0.22 1.82 3.41 2.22	0.01 0.02 0.02 0.04 1.17 3.91 4.79	0.40 8.35 22.67 12.68 5.56		0.01 0.02 0.02 0.75 13.51 36.41 26.95 18.79 2.56	
Commalized Conr 1 2 3 4 5 6 7 8 6 7 8 9 10 11+ 12+ Poly Total	0.07 1.46 3.71 3.23 2.56 11.03	0.01 0.60 2.72 4.03 14.22	0.22 1.82 3.41 2.22 7.77	0.01 0.02 0.04 1.17 3.91 4.79	0.40 8.35 22.67 12.68 5.56 49.66		0.01 0.02 0.02 0.75 13.51 36.41 26.95 18.79 2.96 100.00	
Commalized Conr 1 2 3 4 5 6 7 8 9 9 10 11+ 12+ Poly Total	0.07 1.46 3.71 3.23 2.56 11.03	0.01 0.60 2.72 14.22 21.57	0.22 1.82 3.41 2.22 7.77	0.01 0.02 0.04 1.17 3.91 4.79 9.96	0.40 8.35 22.87 12.68 5.56 49.66		0.01 0.02 0.02 0.75 13.51 36.41 26.85 18.79 2.96 100.00	
Comalized Conr 1 2 3 4 5 6 7 8 9 10 11+ 12+ Poly Total EN ISO 222	0.07 1.48 3.71 3.23 2.56 11.03 854 / ASTM	0.01 0.01 0.60 2.72 4.03 14.22 21.57 D 6839	0.22 1.52 3.41 2.22 7.37	0.01 0.02 0.02 0.04 1.17 3.91 4.79 9.98	0.40 8.35 22.87 12.68 5.56 48.66		0.01 0.02 0.02 0.75 13.51 36.41 26.95 18.79 2.56 100.00	
Comalized Conr 1 2 3 4 5 6 7 8 9 10 11+ 12+ Poly Total Encrete Encrete	0.07 1.48 3.71 3.23 2.56 11.03 854 / ASTM	0.01 0.60 2.72 14.22 21.57 D 6839	0.22 1.92 3.41 2.22 7.37	0.01 0.02 0.04 1.17 3.91 4.79 9.96	0.40 8.35 22.87 12.68 5.58 49.66		0.01 0.02 0.75 13.51 36.41 26.95 19.79 2.56 100.00	
Comalized Cont 2 3 4 5 6 6 7 8 9 9 10 11+ 12+ Poly Total En ISO 220 Benzene Total Arom	0.07 0.07 1.46 3.71 3.23 2.56 11.03 854 / ASTM atics	0.01 0.60 2.72 4.03 14.22 21.87 D 6839	0.22 1.82 3.41 2.22 7.37 0.00 49.6	0.01 0.02 0.02 0.04 1.17 3.91 4.79 9.98 9.98	0.40 8.35 22.67 12.68 5.56 49.65		0.01 0.02 0.75 13.51 36.41 26.85 18.79 2.56 100.00	
Comalized Conr 2 3 4 5 6 6 7 8 9 9 10 11+ 12+ Poly Total En ISO 228 Benzene Total Arom Total Clefin	0.07 1.46 3.71 3.23 2.56 11.03 854 / ASTM	0.01 0.01 0.60 2.72 4.03 14.22 21.57 D 6839	0.22 1.82 3.41 2.22 7.37 0.00 49.6 17.7	0.01 0.02 0.04 1.17 3.91 4.79 9.96 0.1/% 6.1/% 6.1/%	0.40 8.35 22.67 12.68 5.56 49.65		0.01 0.02 0.75 13.51 36.41 26.85 19.79 2.56 100.00	
Commalized Commalized Commando Command	Naph. Naph. 0.07 1.48 3.71 3.23 2.56 11.03 854 / ASTM alics s ates	0.01 0.60 2.72 4.03 14.22 21.57 D 6839	0.22 1.82 3.41 2.22 7.77 0.00 49£ 17.7 32£	0.01 0.02 0.04 1.17 3.91 4.79 9.96 0.UV% 6 UV% 6 UV% 4 UV% 0 UV%	0.40 8.35 22.67 12.68 5.56 48.66		0.01 0.02 0.75 13.51 36.41 26.85 19.79 2.56 100.00	, , ,

APPENDIX 8 - EXAMPLE OF PAH REPORT (SAMPLE 176 - VHGO)

P.B.U			
	Test F	Report	
	BIU-Report-No.:	CCW1526	
Customer:	Concawe Boulevard du Souverain 165 B-1160 Brussels Belgium		
Order from:	19.05.2015		
Sample:	Original-Customer- No.	Sample descripton	BIU-Sample- No.
	176		CCW1526
Analysis of:	Determination of polycyclic a	aromatic hydrocarbons	
Sampling:	sent by customer		
receipt of sample:	18.05.2015		
Test method:	PAH - 0397 (Grimmer Metho	od)	
Start of analysis:	09.06.2015		
End of analysis:	10.06.2015		
Results of analysis:	see tables 01and 02		
Remarks:	none		

Report-No.:	CCW1526	
Sample description: Kind of sample:	: 176	
Test method: Instrument-No.:	PAH - 0397 (Grimmer Method) L5MSDB	
Table 01:		
	Unit	mg/kg
	Phenanthrene	250,497
	Anthracene	12,507
	Fluoranthene	37,152
	Pyrene	58,564
	Benzo[b]naphtho[2,1-d]thiophene	32,855
	Benzo[ghi]fluoranthene	0,686
	Benzo[c]phenanthrene	0,555
	Benzo[a]anthracene	32,511
	Cyclopenta[cd]pyrene	<0,001
	Triphenylene	39,574
	Chrysene	49,346
	Benzo[b]fluoranthene	15,672
	Benzo[k]fluoranthene	3,205
	Benzo[j]fluoranthene	3,299
	Benzofluoranthenes (b+k+j)	22,176
	Benzo[e]pyrene	23,047
	Benzo[a]pyrene	9,533
	Perylene	18,544
	Indeno[1,2,3-cd]pyrene	1,913
	Dibenzo[a,h]anthracene	1,378
	Benzo[ghi]perylene	5,571
	Anthanthrene	0,474
	Dibenzo[a,l]pyrene	0,282
	Dibenzo[a,e]pyrene	0,543
	Dibenzo[a,i]pyrene	<0,001
	Dibenzo[a,h]pyrene	<0,001
	Coronene	0,454

Page 2 of 2 Pages

RBU			
	TESTR	EPORT	
	BIU-Report-No.	CCW1526b	
Customer:	Concawe Boulevard du Souverain 165 B-1160 Brussels Belgium		
Order from:	19.05.2015		
Sample:	Origin Customer- No.	Sample description	BIU-Sample- No.
	176		CCW1526
Sampling:	sent by customer	aromatic nyorocarbons	
receipt of sample:	18.05.2015		
Test method:	PAH - 0397, (N, 2Me-N, 1-N	/Ie-N, ACY, ACN, F)	
Start of analysis:	09.06.2015		
End of analysis:	10.06.2015		
Results of analysis:	see table 01		
Remarks:	Because of their relative volatility the P and fluorene are difficult to be determine	AH congeners naphthalene, ace red especially at low levels. The	naphthylene, acenaphthene, results obtained for these for

BIOCHEMICAL INSTITUTE FOR ENVIROMENTAL CARCINOGENS Prof. Dr. Gernot Grimmer-Foundation Lurup 4, D-22927 Grosshansdorf, Germany

Sample description: Kind of sample:	176	
Test method: Instrument-No.:	PAH - 0397, (N, 2Me-N, 1-Me-N, ACY, A L5MSDB	ACN, F)
Table 01:		
	Unit	mg/kg
	Naphthalene	5,826
	2-Methylnaphthalene	31,732
	1-Methylnaphthalene	17,379
	Acenaphthylene	1,259
	Acenaphthene	4,932
	Fluorene	52,963
Date:	10.06.2015 Operate	or: <u>Pisulla</u>
Date:	10.06.2015 Operate	or:Pisulla
Date: Management:	10.06.2015 Operate M. M. M. Hurd H. Hu	or: <u>Poula</u> Pisulla John or Dr. Sönke Jessel

APPENDIX 9 - EXAMPLE OF ELEMENTAL ANALYSIS REPORT (SAMPLE 190 -BITUMEN)

Page 1 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Carbon, Hydrogen & Nitrogen Content

Test Conditions:

Analysis Laboratory	Intertek Sunbury
Head of Laboratory	Anthony Sweetland
Analyst	Dave Mills
Date of Analysis	04/07/16
Nature of test substance (solid or liquid)	Liquid
Instrument Used (name and model, e.g. FT-IR)	Thermo Flash 2000 Flash Combustion Analyser
Calibration Type	K-Factor
Furnace Temperature	960°C
Oven (GC Column) Temperature	75°C
Sample size	1.5 – 3 mg
Carrier flow (He)	130 ml/min
Reference flow (He)	100 ml/min
O ₂ flow	240 ml/min
O2 injection end	5s
Sampling delay	12s
Run time	750s
Calibration protocol	Instrument calibrated using acetanilide (NIST 141d), and
	the Quality Control standards were benzoic acid (LGC
	Standards 4003) and nicotinic acid (NIST 148).
Method description	ASTM D5291 modified – MT/ELE/13

Results:

The sample is encapsulated in tinfoil and dropped into a furnace at 960°C with an aliquot of oxygen and helium carrier gas. The tin burns with a flash combustion taking the temperature up to 2000°C. The gases flow over an oxidizing catalyst which forms CO₂ and H₂O. The gases then flow over a hot copper metal which will reduce any nitrogen oxides produced to N₂. These go through to a GC column and followed by thermal conductivity detection.

ANALYSIS	RESULTS	UNITS
Carbon Content by ASTM D5291 modified – MT/ELE/13	85.9	% wt/wt
Hydrogen Content by ASTM D5291 modified – MT/ELE/13	10.8	% wt/wt
Nitrogen Content by ASTM D5291 modified – MT/ELE/13	0.6	% wt/wt

Page 2 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

The sample is injected into a hot tube at 1060°C with a helium carrier gas and a nickelised carbon catalyst to form carbon monoxide. Acidic gases and moisture are scrubbed out, the sample then flows onto a GC column to separate the carbon monoxide followed by thermal conductivity detection.

ANALYSIS	RESULTS	UNITS
Oxygen Content by Pyrolysis (MT/ELE/21)*	0.6	% wt/wt

Page 3 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Sulphur Content

Test Conditions:

Analysis Laboratory	Intertek Sunbury
Head of Laboratory	Anthony Sweetland
Analyst	Andy Geatches
Date of Analysis	23/06/16
Nature of test substance (solid or liquid)	Liquid
Instrument Used (name and model, e.g. FT-IR)	Panalytical Axios Wavelength Dispersive X-Ray
	Fluorescence Spectrometer (WD-XRF)
Crystal	Ge 111-C
Voltage	30keV
Amps	133mA
Medium	Helium
Measurement Angle SKa	110.7 degrees
Measurement Angle PbMa	108.0 degrees
Detector	Flow
Collimator	300 microns
Method description	MT/ELE/05

Results:

Determination of Sulphur in oil using a Panalytical Axios Wavelength Dispersive X-Ray Fluorescence Spectrometer (WD-XRF). The method uses a lead internal standard, and the calibration range is 0.001-4.5% w/w.

ANALYSIS	RESULTS	UNITS
Sulphur by WD-XRF (MT/ELE/05)	1.84	% wt/wt

Page 4 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

			RT/ELE/16341
Flowental Contentt			
Elemental Content*			
Test Conditions:			
<u></u>			
Analysis Laboratory	Intertek S	Sunbury	
Head of Laboratory	Anthony	Sweetland	
Analyst	Tayyaba	Rizvi	
Date of Analysis	26/08/16		
Nature of test substance (solid or liquid)	Liquid		
Instrument Used (name and model, e.g. FT	-IR) ICP-OES	Optima 7300V	
Plasma Gas Flow	20 L/min		
Auxiliary Gas Flow	2 L/min		
Nebuliser Gas Flow	0.32 L/mi	n	
Pump Flow Rate	1 ml/min		
RF Power	1500 Wat	tts	
Method description	D5185mc	od (MT/ELE/01)	
<u>Results:</u>			
is method for the determination of additive ele	ements, wear met	als and contaminant el	ements using Inductively
Supled Plasma Optical Emission Spectrometry ((ICP OES). The s	ample is diluted in whit	e spirit/xylene containing
ng/L Yttrium internal standard. Solutions are intr	oduced to the ICP	' instrument, and then a	spirated into the plasma.
te intensity of the resultant emitted light is mea	isured at the follo	wing characteristic wav	libration range is 1.5.000
nge is 1-900 mg/kg for all elements except for n	iickei, phosphorus	and lead, where the ca	libration range is 1.5-900
у/ку.			
		RESULTS	LINITS
ANAL 1010		INEGUEI O	UNITO
Arsenic by ICP-OES (MT/ELE/01mod)*		<1	ma/ka

Arsenic by ICP-OES (MT/ELE/01mod)*	<1	mg/kg
Cadmium by ICP-OES (MT/ELE/01mod)*	<1	mg/kg
Cobalt by ICP-OES (MT/ELE/01mod)*	<5	mg/kg
Copper by ICP-OES (MT/ELE/01)*	<1	mg/kg
Iron by ICP-OES (MT/ELE/01)*	9	mg/kg
Molybdenum by ICP-OES (MT/ELE/01)*	<1	mg/kg
Nickel by ICP-OES (MT/ELE/01)*	43	mg/kg
Phosphorus by ICP-OES (MT/ELE/01)*	<14	mg/kg
Lead by ICP-OES (MT/ELE/01)*	<6	mg/kg
Vanadium by ICP-OES (MT/ELE/01)*	124	mg/kg
Zinc by ICP-OES (MT/ELE/01)*	1	mg/kg

Page 5 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Chlorine Content*

Test Conditions:

Analysis Laboratory	Intertek Sunbury
Head of Laboratory	Anthony Sweetland
Analyst	Andy Picton
Date of Analysis	01/07/16
Nature of test substance (solid or liquid)	Liquid
Instrument Used (name and model, e.g. FT-IR)	MWD-XRF
Matrix	Iso-octane
Analytical Conditions	Scan time set to 2 minutes
Method description	MT/ELE/25

Results:

The determination of chlorine by monochromatic wavelength dispersive x-ray fluorescence (MWD XRF). The instrument was calibrated using certified chlorine material in iso-octane. The calibration range is 0.31 mg/kg to 1.61 mg/kg and results were duplicated and reported to the nearest 0.1 mg/kg.

ANALYSIS	RESULTS	UNITS
Chlorine by MWD-XRF ASTM D7536 - modified (MT/ELE/25)*	4	mg/kg

Page 6 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Mercury Content*

Test Conditions:

Analysis Laboratory	Intertek Sunbury
Head of Laboratory	Anthony Sweetland
Analyst	Rachel Inkster
Date of Analysis	15/06/16
Nature of test substance (solid or liquid)	Liquid
Instrument Used (name and model, e.g. FT-IR)	Nippon Mercury Analyser SP-3D (E)
Furnace Temperature	700°C
Sample size	100 µl
Carrier Gas	Dry, clean air
Method description	IP 594 modified

Results:

The sample is placed in a furnace and decomposed by combustion. The mercury vapor in the gaseous product is collected as an amalgam in a gold trap. Once sample combustion is complete, the mercury is released from the gold trap by heating to 700°C, carried to an absorption cell with a pure carrier gas and detected by cold vapor atomic absorption spectrometry (CVAAS). The calibration range is 0.1–10 mg/kg. The sample was run followed by a 100 ng/g spike.

ANALYSIS	RESULTS	UNITS
Mercury by CVAAS (IP 594 mod)*	<1.0	mg/kg

Page 7 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Fluorine Content*

Test Conditions:

Analysis Laboratory	Intertek Sunbury
Head of Laboratory	Anthony Sweetland
Analyst	Dave Mills
Date of Analysis	23/06/16
Nature of test substance (solid or liquid)	Liquid
Instrument Used (name and model, e.g. FT-IR)	Antek PAC Multitek linked with Dionex ICS 2100 Ion
	Chromatography System
Calibration type	Linear regression
Calibration protocol	Instrument calibrated using 4-fluorobenzoic acid
	(Elemental Microanalysis), and fluorobenzene used as a
	Quality Control standard
Furnace Temperature	1050°C
Sample size	20ul
Ar/He flow	140 ml/min
Pyro O ₂ flow	450 ml/min
Carrier O ₂ flow	30 ml/min
Suppressor	ASRS 300 4mm
IC flow rate	1ml/min
IC Column	Ion Pac AS18
Detector type	Conductivity
Method description	ASTM D7359

Results:

The sample is combusted in a stream of oxygen, helium and steam at 1050°C. The combustion products are collected in water and pumped onto an IC system. The calibration range is 0–10 mg/kg.

ANALYSIS	RESULTS	UNITS
Fluorine Content by Combustion followed by IC (ASTM D7359)*	<2	mg/kg

* Test not UKAS accredited

Analysis has been carried out on samples as received, independent of sampling procedure, using the latest versions of all test methods.

Samples will be disposed of after 1 month unless alternative arrangements have been made in agreement with the customer.

¥ Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Tayyaba Rizvi Elemental Analyst

1. orge or il Checked By:____

Andy Geatches

Section Head – Elemental

Contact No.: +44(0)1932 732 152

Reported By:

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratorv.

Page 8 of 13

report no. 5/19

Page 11 of 13

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

APPENDIX 10 - EXAMPLE OF FIMS REPORT (SAMPLE 115 - OLBO)

Intertek Sunbury Technology C	Centre	ITS Testing Services (UK) Ltd Sunbury Technology Centre Unit 'A' Shears Way Brooklands Close Sunbury-on-Thames Middlesex TW 16 7EE Tel : 01932 73 2100 Fax : 01932 73 2113
To: The European Petroleum Refiners Association AISBL Boulevard de Souverain 165 B-1160 Brussels Belgium	Report No. Date: Phoenix No. Order No.	RT/CMS/12130 14/03/2016 UK760-0020425 201510100 #02
	Date Sample(s)	Received 15/12/2015
Field Ionisation Mass Spectron	netry Analysis	for REACH Submission
Sample No. Sample 115		
Lab Sample No: CMS-283677	,	
Disclaimer		
Inis report was made with due care within the information, materials received from the Customer accordance with the Customer's instructions. Intertel or circumstances which are outside the specific in parties whatsoever, following the issue of the report works. The tests results are not intended to be a reco is responsible for acting as it sees fit on the basis of the sample(s) that were drawn and delivered by the result(s) provide no warranty or verification on the s shipment and only relate to the sample(s) as recei- damages caused to the samples during their transit conditions surrounding the samples during the trans- or release the factory/sellers/suppliers from their co end-users in respect of products provided by the fac- that the material, product, or service is or has ever be Intertek name or one of its marks for the sale or adv approved in writing by Intertek	e limitation of a d or its nominated k is under no oblig structions receive t, for any matters ommendation for a f such results. The c Customer or the ample(s) represent ived and tested. to Intertek's facilities it may impact the ommercial, legal of ctory/sellers/supp even under an Inte- ertisement of the	enned scope of work and on the basis of third parties or collected by Intertek in gation to refer to or report upon any facts ed and accepts no responsibility to any arising outside the agreed scope of the any particular course of action. Customer he reported result(s) relate specifically to heir nominated third party. The reported ning any specific goods, material and/or Intertek will not be responsible for any ies and Customer acknowledges that the e results. This report does not discharge or contractual obligations with buyers or liers. This report by itself does not imply rtek certification program. Any use of the tested materials or product must first be
Page 1 of 1	17	Registered in England No. 1408264 Registered Office

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAssel.aspc?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

	Report No. RT/CMS/12130	
Sample Summary		
Sample No.	Sample 115	
Lab Sample Ivo:	CMS-2836/7	
The sample was separate fractions were analysed by present. The saturate frac derive the content of the b	into saturate and aromatic hydrocarbon fractions. The sa Field Ionization Mass Spectrometry (FIMS) to determine on was also analysed to determine the n-alkane content, anched open-chain alkanes.	turate and aromatic the hydrocarbon types which was then used to
Methods:		
The sample was separate method are shown in the a	into saturate and aromatic fractions according to method opendix.	IP368*. Details of the
Both the saturate fraction (FIMS), using a Micromas mass range of 100 to 100 insertion probe.*	nd the aromatic fraction were analysed using Field Ionisa ZabSpec magnetic sector mass spectrometer operating i Daltons. The fractions were introduced into the instrumer	tion Mass Spectrometry n the FI mode over a nt using a heated direct
Samples are subject to an electron by quantum elect majority of ions so produc	intense electric field (~11kV) in the FIMS source, and ions on tunnelling. There is little or no fragmentation in the FIM d are molecular ions. See the appendix for full details of c	created by removal of an S process, and the great onditions.
The n-alkane content* wa: 15199-1) – "Petroleum Pro – Part 1: Middle Distillates diluted in carbon disulfide areas valley to valley. Ide Polywax 1000, and quanti conditions.	determined on the saturate fraction by GC-FID according ducts - Determination of Boiling Range Distribution by Ga and Lubricating Oils", using a GC-FID on a 5m ZB-1XT co prior to analysis, and the n-alkane content calculated by in tification of n-alkanes was by retention time comparison v cation was by normalized area percent. See the appendix	to method IP480 (EN s Chromatography Method Jumn. The sample was tegrating the n-alkane peal vith a reference standard o for full details of
* Not UKAS Accredited		
	Dana 6 of 17	Registered in England
All confeet	Page 2 of 17	Registered Office
and condition This Test re	s set at http://www.intertek.com/WorkArea/DwnioadAsset.asp?dic-14263 . ord shall not be reproduced except in full, without written approval of the	1-9 Brook Street Brentwood

report no. 5/19

Report No. RT/CMS/12130

FIMS Results ¥

Saturates Fraction

Sensitivity corrected normalised data for the acyclic alkanes and cycloalkanes are shown in Table 4. Figure 3 shows the Z number distribution for this sample as relative abundance versus carbon numbers for Z numbers ranging from Z = +2 to Z = -10.

The basic definition of Z number is taken from the empirical formula for hydrocarbons, C_nH_{2n+Z} . In the absence of olefins and aromatics, the Z numbers can be assigned to the acyclic alkanes and cycloalkanes shown below:

- Z = +2 acyclic alkanes (normal and branched)
- Z = 0 cycloalkanes
- Z = -2 bicycloalkanes
- Z = -4 tricycloalkanes
- Z = -6 tetracycloalkanes
- Z = -8 pentacycloalkanes
- Z = -10 hexacycloalkanes

n-Alkanes were not detected in the sample, thus the components within the FIMS (Z = +2) series can be considered to be iso-alkanes only.

Summarised results of the FIMS data for the saturate fraction are shown in Table 2. The results for 'on total sample' are based on the IP368 data shown in Table 1.

Aromatics Fraction

The normalised raw data is shown in Table 5. The basic definition of Z number is taken from the empirical formula for hydrocarbons, C_nH_{2n+Z} . Figure 4 shows the Z number distribution for this sample as relative abundance versus carbon number. In the absence of olefins, the Z numbers can be assigned to aromatics and cycloaromatics as shown below:

Z = -6	Alkyl benzenes	1 ring aromatics
Z = -8	Indanes	ů –
Z = -10	Indenes	
Z = -12	Naphthalenes, dibenzothiphenes (Z= -16S)	2 ring aromatics
Z = -14	Acenaphthenes, bi-phenyls	-
Z = -16	Acenaphthylenes, fluorenes	
Z = -18	Phenanthrenes	3 ring aromatics
Z = -20	CnH2n-20 Aromatics and benzothiophenes (Z= -10S)	Ŭ
Z = -22	Fluoranthenes and pyrenes	
Z = -24	Benz()anthracenes and chrysenes	4 ring aromatics
~		
Summai	rised results of the FIMS data for the aromatic fracti	on are shown in Table 3. The results for 'on total
sample	are based on the IP368 data shown in Table 1.	

Page 5 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspt?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130 The FIMS analysis is performed at a mass resolution such that it cannot distinguish between isobaric structures of the same nominal mass[†], e.g. a C₁₄ naphthalene, Z = -12, is isobaric (nominal mass 184; accurate mass 184.1252) with a C13 alkane Z = 2, is isobaric (nominal mass 184; accurate mass 184.2191). It is also isobaric with dibenzothiophene (nominal mass 184; accurate mass 184.0347). Therefore tables 3 and 5 also show alternative isobaric Z numbers, as shown. Therefore it is probable that the Z numbers series observed may contain a mixture of structural types. Aromatics FIMS by FIMS Acenaphthenes by FIMS Naphthalenes by FIMS Acenaphthylenes/ Fluorenes by FIMS FIMS Inclanes by FIMS Phenan threnes by Benzenes ≧ Indenes Alkyl Z Number -6 -8 -10 -12 -14 -16 -18 by FIMS -20 Aromatics by FIMS -32 Aromatics by FIMS lics 30 Aromatics by FIMS Fluoranthenes/ Pyrenes by FIMS Benz anthracenes Chrysenes by FIMS -28 Aromati by FIMS Ш ш ш ш ш N N Ν N Ν Z Number -20 (-10S) <mark>26</mark> (-16S) -32

In Table 5 the carbon number at and above which the higher (numerically) Z numbers begin are highlighted in yellow.

† Currently, it is not possible to run this analysis at a higher mass resolution sufficient to distinguish these isobaric structures on the instrument used.

Page 6 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspc?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130

Saturates: Sensitivity Corrected Normalised Data									
	n-Alkanes by GC	iso-Alkanes by difference	Total Alkanes by FIMS	Cy doalkanes by FIMS	Bicycloalkanes by FIMS	Tricy cloalkanes by FIMS	Tetracycloalkanes by FIMS	Pentacycloalkanes by FIMS	Hexacycloalkanes by FIMS
Z Number	2	2	2	0	-2	-4	-6	-8	-10
On Fraction	0.0	11.6	11.6	25.6	22.5	15.2	16.1	7.1	1.9
On Sample [#]	0.0	11.2	11.2	24.7	21.7	14.6	15.5	6.8	1.8

Table 2 Summary of saturate fraction of total sample

Table 3 Summary of aromatic fraction of total sample

Aromatics: Normalised Raw Data									
	Alkyl Benzenes by FIMS	Indanes by FIMS	Indenes by FIMS	Naphthalenes by FIMS	Acenaphthenes by FIMS	Acenaphthylenes/ Fluorenes by FIMS	Phenanthrenes by FIMS		
Z Number	-6	-8	-10	-12	-14	-16	-18		
Z Number	-20 (-10S)	-22	-24	-26 (-16S)	-28	-30	-32		
On Fraction	10.6	11.5	16.6	20.9	18.9	12.1	9.4		
On Sample [#]	0.4	0.4	0.6	0.8	0.7	0.4	0.3		

Adjusted for saturates and aromatics ratio

Page 7 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspr?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130

Saturates: Sensitivity Corrected Normalised Data									
Carbon No.	n-Alkanes by GC	iso-Alkanes by difference	Total Alkanes by FIMS	Cy doalkanes by FIMS	Bicycloalkanes by FIMS	Tricycloalkanes by FIMS	Tetracy doalkanes by FIMS	Pentacycloalkanes by FIMS	Hexacycloalkanes by FIMS
Sensitivity	-	-	0.56	1.00	1.63	2.42	1.70	2.27	3.94
Z Number	2	2	2	0	-2	-4	-6	-8	-10
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
18	0.00	0.01	0.01	0.02	0.01	0.00	0.00	0.00	0.00
19	0.00	0.02	0.02	0.01	0.01	0.00	0.00	0.00	0.00
20	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.00
21	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.01	0.00
22	0.00	0.01	0.01	0.03	0.02	0.01	0.02	0.01	0.01
23	0.00	0.03	0.03	0.02	0.02	0.03	0.04	0.02	0.01
24	0.00	0.08	0.08	0.07	0.05	0.04	0.05	0.03	0.01
25	0.00	0.05	0.05	0.06	0.09	0.08	0.08	0.04	0.01
26	0.00	0.10	0.10	0.12	0.13	0.11	0.14	0.05	0.02
27	0.00	0.11	0.11	0.25	0.24	0.18	0.24	0.08	0.02
28	0.00	0.14	0.14	0.37	0.34	0.27	0.34	0.12	0.02
29	0.00	0.23	0.23	0.53	0.50	0.38	0.48	0.19	0.03
30	0.00	0.35	0.35	0.70	0.70	0.51	0.64	0.27	0.05
31	0.00	0.40	0.40	1.01	0.94	0.64	0.68	0.32	0.08
32	0.00	0.53	0.53	1.23	1.14	0.74	0.82	0.37	0.07
33	0.00	0.61	0.61	1.40	1.35	0.86	0.99	0.41	0.09
34	0.00	0.64	0.64	1.70	1.47	1.03	0.99	0.45	0.10
35	0.00	0.76	0.76	1.81	1.56	1.02	1.02	0.47	0.12
36	0.00	0.84	0.84	1.78	1.48	1.02	0.98	0.40	0.12
37	0.00	0.80	0.80	1.74	1.54	1.00	0.97	0.40	0.12
38	0.00	0.79	0.79	1.87	1.53	0.97	0.95	0.42	0.12
39	0.00	0.79	0.79	1.75	1.43	0.96	0.95	0.38	0.11
40	0.00	0.70	0.70	1.70	1.42	0.84	0.85	0.36	0.10
41	0.00	0.54	0.54	1.26	1.00	0.70	0.72	0.31	0.09

Table 4 Sensitivity corrected normalised data for saturate fraction from CMS-283677

Page 8 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspr?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130									
42	0.00	0.51	0.51	1.09	0.85	0.62	0.65	0.30	0.09
43	0.00	0.41	0.41	0.90	0.79	0.48	0.57	0.26	0.07
44	0.00	0.36	0.36	0.74	0.61	0.43	0.46	0.22	0.07
45	0.00	0.28	0.28	0.69	0.62	0.38	0.40	0.17	0.06
46	0.00	0.26	0.26	0.52	0.47	0.33	0.34	0.16	0.06
47	0.00	0.22	0.22	0.44	0.41	0.25	0.30	0.12	0.05
48	0.00	0.17	0.17	0.41	0.34	0.23	0.24	0.13	0.03
49	0.00	0.15	0.15	0.28	0.29	0.20	0.24	0.12	0.03
50	0.00	0.10	0.10	0.26	0.24	0.17	0.20	0.09	0.02
51	0.00	0.13	0.13	0.18	0.21	0.13	0.12	0.08	0.02
52	0.00	0.10	0.10	0.13	0.15	0.10	0.12	0.05	0.02
53	0.00	0.06	0.06	0.09	0.13	0.10	0.10	0.06	0.02
54	0.00	0.03	0.03	0.13	0.10	0.06	0.09	0.04	0.02
55	0.00	0.05	0.05	0.09	0.08	0.05	0.05	0.03	0.01
56	0.00	0.06	0.06	0.05	0.05	0.05	0.04	0.03	0.01
57	0.00	0.02	0.02	0.05	0.05	0.05	0.03	0.03	0.01
58	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.02	0.01
59	0.00	0.03	0.03	0.03	0.04	0.03	0.03	0.01	0.00
60	0.00	0.05	0.05	0.02	0.02	0.02	0.03	0.01	0.00
61	0.00	0.01	0.01	0.02	0.02	0.01	0.02	0.01	0.00
62	0.00	0.01	0.01	0.00	0.01	0.01	0.02	0.01	0.00
63	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00
64	0.00	0.01	0.01	0.01	0.00	0.00	0.02	0.01	0.00
65	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
66	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.00	0.00
67	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00
68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals	0.0	11.6	11.6	25.6	22.5	15.2	16.1	7.1	1.9

! n-Alkanes can only be reported up to C_{37}/C_{38} , after which they merge with the other hydrocarbons.

Page 9 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130

Aromatics: Normalised Raw Data							
Carbon No.	Alkyl Benzenes by FIMS	Indanes by FIMS	Indenes by FIMS	Naphthalenes by FIMS	Acena phthenes by FIMS	Acenaphtrylenes' Fluorenes by FIMS	Phenanthrenes by FIMS
Z Number	-6	-8	-10	-12	-14	-16	-18
Z Number	-20 (-10S)	-22	-24	-26 (-16S)	-28	-30	-32
8	0.03	0.00	0.00	0.00	0.00	0.00	0.00
9	0.01	0.02	0.03	0.04	0.05	0.02	0.01
10	0.01	0.01	0.00	0.05	0.04	0.01	0.04
11	0.02	0.01	0.01	0.02	0.01	0.05	0.02
12	0.00	0.00	0.01	0.02	0.03	0.02	0.02
13	0.01	0.01	0.01	0.08	0.06	0.01	0.00
14	0.01	0.01	0.14	0.02	0.04	0.03	0.02
15	0.04	0.03	0.02	0.02	0.04	0.04	0.00
16	0.02	0.02	0.05	0.17	0.08	0.06	0.03
17	0.03	0.05	0.17	0.17	0.15	0.09	0.05
18	0.06	0.17	0.41	0.38	0.18	0.22	0.12
19	0.12	0.22	0.68	0.72	0.26	0.27	0.15
20	0.27	0.35	0.89	1.13	0.46	0.43	0.38
21	0.26	0.40	1.10	1.39	1.00	0.77	0.34
22	0.45	0.72	1.13	2.14	1.20	0.63	0.59
23	0.59	0.98	1.34	1.61	1.22	0.73	0.46
24	0.49	1.05	1.28	1.81	1.38	0.88	0.58
25	0.84	0.90	1.40	1.44	1.49	0.66	0.49
26	0.84	0.88	1.24	1.63	1.61	1.00	0.72
27	1.02	0.74	1.21	1.63	1.66	0.84	0.85
28	1.07	0.90	1.25	1.71	2.07	0.89	0.80
29	0.88	0.79	0.82	1.42	1.42	1.07	0.70
30	0.73	0.66	0.80	0.84	0.97	0.41	0.64
31	0.73	0.45	0.57	0.58	0.92	0.53	0.46
32	0.49	0.50	0.51	0.42	0.60	0.43	0.34
33	0.33	0.34	0.33	0.31	0.44	0.42	0.23
34	0.22	0.22	0.25	0.27	0.37	0.28	0.24
35	0.13	0.20	0.17	0.19	0.28	0.25	0.21
36	0.17	0.19	0.12	0.25	0.19	0.17	0.17
37	0.27	0.15	0.16	0.10	0.13	0.11	0.12
38	0.11	0.12	0.10	0.07	0.12	0.16	0.07
39	0.06	0.10	0.12	0.11	0.10	0.13	0.14
40	0.11	0.05	0.07	0.02	0.03	0.06	0.06

Table 5 Normalised data for aromatic fraction from CMS-283677

Page 11 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.interlek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

	Report No. RT/CMS/12130						
41	0.01	0.09	0.06	0.02	0.06	0.06	0.09
42	0.05	0.03	0.06	0.01	0.04	0.04	0.05
43	0.03	0.01	0.02	0.02	0.00	0.06	0.06
44	0.04	0.01	0.04	0.03	0.02	0.03	0.06
45	0.04	0.04	0.01	0.04	0.04	0.01	0.06
46	0.00	0.01	0.01	0.00	0.04	0.03	0.00
47	0.00	0.01	0.00	0.00	0.01	0.09	0.00
48	0.03	0.03	0.00	0.00	0.01	0.06	0.02
49	0.00	0.01	0.01	0.02	0.01	0.00	0.00
50	0.01	0.00	0.00	0.01	0.00	0.01	0.01
51	0.00	0.00	0.00	0.00	0.01	0.00	0.01
52	0.00	0.00	0.00	0.01	0.01	0.00	0.00
53	0.00	0.01	0.00	0.00	0.01	0.00	0.00
54	0.00	0.00	0.00	0.00	0.01	0.00	0.01
55	0.01	0.00	0.00	0.00	0.00	0.00	0.00
56	0.00	0.00	0.01	0.00	0.00	0.00	0.01
57	0.00	0.00	0.01	0.00	0.00	0.01	0.00
58	0.00	0.00	0.00	0.00	0.01	0.00	0.00
59	0.00	0.00	0.00	0.00	0.00	0.02	0.00
60	0.01	0.00	0.00	0.00	0.00	0.00	0.00
61	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62	0.00	0.00	0.01	0.00	0.00	0.00	0.00
63	0.00	0.00	0.00	0.00	0.00	0.00	0.03
64	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals %	10.6	11.5	16.6	20.9	18.9	12.1	9.4

Note: the amount of material isolated as aromatic fraction was very low and gave a very weak signal by FIMS (and a very weak UV signal in the HPLC separation), thus the data should be treated with caution.

Page 12 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130				
* Tests not UKAS accredited				
Analysis has been carried out on samples as received, independent of sampling procedure, usi of all test methods.	ng the latest versions			
Samples will be disposed of after 1 month unless alternative arrangements have been made in customer.	agreement with the			
¥ Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.				
Reported By: Phillip G McDowell Technical Specialist Contact No.: +44(0)1932 732 105 Phillip G McDowell Technical Specialist Contact No.: +44(0)1932 732 105	ough al Specialist			
	Bagistered in England			
Page 14 of 17	No. 1408264 Registered Office			
An envices of work performed by it's results services (UK) Lid are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.asp?2dc-14263</u> . This Test report shall not be reproduced except in full, without written approval of the laboratory.	Academy Place 1-9 Brook Street Brentwood Essex CM14 5NQ			

Report No. RT/CMS/12130
Appendix
HPLC Separation*
<u>Test Method:</u> IP 368 "Determination of Hydrocarbon Types in Lubricating Basestocks – Preparative High Performance Liquid Chromatography Method".*
<u>Conditions:</u> Column = 2 x Luna Silica 10µm (250 x 10mm) Injector = 1ml Mobile Phase = HPLC Grade Hexane Flow Rate = 5ml/min Detection = Refractive Index (RI) and ultraviolet (UV)
IP368 Saturate and Aromatic Fraction Preparation
The preparations were made using a Gilson LC System consisting of a pump, manual injection port, two Luna Silica 10µm columns, a Spectraflow 783 UV and an RI detector. 2.5g of sample was diluted to 25mls with hexane and 1ml injected into the mobile phase (hexane). The saturate and aromatic components were then separated by the column.
The saturates peak was identified and the gravimetric cut point times determined using the refractive index detector. The aromatic peak was identified and the gravimetric cut point times determined using the UV detector. The cut points were used to collect the fractions. The solvent content of each fraction was removed and the results were calculated gravimetrically by weighing the individual fractions.
* Test not UKAS accredited

Page 15 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at <u>http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263</u>. This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130

Field ionization Mass Spectrometry*

<u>Instrument</u> – Micromass ZabSpec Ultima Magnetic Sector Mass Spectrometer and analysis conditions as set out below.

Mass Spectrometer	
Ionisation Mode	Field Ionization
Mass Range	100 to 1000 Daltons
Mass Resolution	1500 (5% valley at mass 58)
Scan rate, sec/decade	1.0
Interscan delay, sec	0.1
FI emitter current, mA	3
Interscan FI emitter current, mA	60
FI emitter field voltage, kV	~ 11
Ion accelerating voltage, kV	8
Direct insertion Probe	
Initial probe temperature, °C	40
Initial hold time, min	2
Program rate, °C/min	10
Final probe temperature, °C	450
Final hold time, min	10
Sample concentration	neat
Software	VG OPUS Version 3.6 X
Sensitivity reference standard	Proprietary Reference mix
Mass Calibration Mix	Proprietary Ref mix + Polywax 1000

* Test not UKAS accredited

Page 16 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspr?id=14263 This Test report shall not be reproduced except in full, without written approval of the laboratory.

Report No. RT/CMS/12130

GC Analysis for n-alkanes*

IP480 (EN 15199-1) – "Petroleum Products - Determination of Boiling Range Distribution by Gas Chromatography Method – Part 1: Middle Distillates and Lubricating Oils"

GC-FID Parameters

Column length, m	5
Column internal diameter, mm	0.53
Column material	Ultimetal
Stationary phase	Methyl silicone
Film thickness, µm	0.09
Initial oven temperature, °C	-20
Final column temperature, °C	430
Program rate, °C/min	10
Injector temperature, °C	80
Injector final temperature, °C	430
Program rate, °C/min	15
Hold time, min	5
Detector temperature, °C	450
Carrier gas	Helium
Carrier gas flow rate, ml/min	26.4
Sample size, µl	1
Sample concentration, %(m/m)	~2
Solvent	Carbon disulfide
Injector	PTV

* Test not UKAS accredited

Page 17 of 17

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspr?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

APPENDIX 11(A) - EXAMPLE OF UV, IR AND NMR SPECTRA (SAMPLE 043 - KEROSINE)

UV/VIS

043

Instrument:	Lambda XLS+ spectrometer (Perkin Elmer)
Cell type:	10 ml in UV-cuvette (Hellma analytics)
Cell Width:	1 cm
Path length:	4 cm
Range:	200-900 nm
Solvent:	Heptane
Concentration:	234 mg/L
Test temperature:	20 °C
Measurement time	6 sec. (diode ray spectrometer)
Spectral bandwidth:	3 nm, data interval: 1 nm

043

Instrument:

Number of scans:

Bruker Tensor 27 FTIR instrument with ATR accessory 16

Spectral resolution: 4 cm-1

Wavenumber (cm-1)	Vibration assignment
2957	SP2 CH stretch
2928	SP3 antisymm CH stretch
2856	SP3 symm CH stretch
1605	C=C stretch
1458	CH3 antisymm. Deformation/CH2 bend
1377	CH3 bending
675-800	CH out of plane bend

Chemical shift (PPM relative to CDCI3)	Assignment
0.5-1.0	Methyl groups
1.0-1.4	Methylene groups
1.4-2.0	Methine groups
2.0-4.0	Groups adjucent to aromatic
6.7-8.0	Aromatic proton
7.27	Residual CHCI3

report no. 5/19

Chemical shift (PPM relative to CDCI ₃)	Assignment
10-21	Methyl groups
14	CH3-CH2-CH2-
22-23	CH3-CH2-CH2-
26-29	Mid chain methylene groups
32	CH ₃ -CH ₂ -CH ₂ -
30-55	Branched carbons
77	CDCI ₃
120-150	Aromatic carbons

APPENDIX 11(B) - EXAMPLE OF UV, IR AND NMR SPECTRA (SAMPLE 129 - HFO)

UV/VIS

129

Instrument:	Lambda XLS+ spectrometer (Perkin Elmer)
Cell type:	10 ml in UV-cuvette (Hellma analytics)
Cell Width:	1 cm
Path length:	4 cm
Range:	200-900 nm
Solvent:	Heptane
Concentration:	13.8 mg/L
Test temperature:	20 °C
Measurement time	6 sec. (diode ray spectrometer)
Spectral bandwidth:	3 nm, data interval: 1 nm

129

Bruker Tensor 27 FTIR instrument with ATR accessory 16

Number of scans: 16 Spectral resolution: 4 cm-1

Wavenumber (cm-1)	Vibration assignment
2952	SP2 CH stretch
2927	SP3 antisymm CH stretch
2857	SP3 symm CH stretch
1604	C=C stretch
1460	CH3 antisymm. Deformation/CH2 bend
1378	CH3 bending
675-800	CH out of plane bend

Chemical shift (PPM relative to CDCI3)	Assignment
0.5-1.0	Methyl groups
1.0-1.4	Methylene groups
1.4-2.0	Methine groups
2.0-4.0	Groups adjucent to aromatic
6.7-8.0	Aromatic proton
7.27	Residual CHCl3

report no. 5/19

Chemical shift (PPM relative to CDCI ₃)	Assignment
10-21	Methyl group
14	CH ₃ -CH ₂ -CH ₂ -
22-23	CH ₃ -CH ₂ -CH ₂ -
26-29	Mid chain methylene groups
32	CH ₃ -CH ₂ -CH ₂ -
30-55	Branched carbons
77	CDCl₃
120-150	Aromatic carbons

APPENDIX 11(C) - EXAMPLE OF UV, IR AND NMR SPECTRA (SAMPLE 145 - HRBO)

UV/VIS

145

Instrument:	Lambda XLS+ spectrometer (Perkin Elmer)
Cell type:	10 ml in UV-cuvette (Hellma analytics)
Cell Width:	1 cm
Path length:	4 cm
Range:	200-900 nm
Solvent:	none
Concentration:	100% Sample
Test temperature:	20 °C
Measurement time	6 sec. (diode ray spectrometer)
Spectral bandwidth:	3 nm, data interval: 1 nm

145

Instrument:

Number of scans:

Bruker Tensor 27 FTIR instrument with ATR accessory 16

Spectral resolution: 4 cm-1

Wavenumber (cm-1)	Vibration assignment
2954	SP2 CH stretch
2928	SP3 antisymm CH stretch
2856	SP3 symm CH stretch
1460	CH3 antisymm. Deformation/CH2 bend
1377	CH3 bending
675-800	CH out of plane bend

156

Chemical shift (PPM relative to CDCI3)	Assignment
0.5-1.0	Methyl groups
1.0-1.4	Methylene groups
1.4-2.0	Methine groups
7.27	Residual CHCI3

Chemical shift (PPM relative to CDCI ₃)	Assignment
10-21	Methyl groups
14	CH ₃ -CH ₂ -CH ₂ -
22-23	CH ₃ -CH ₂ -CH ₂ -
26-29	Mid chain methylene groups
32	CH ₃ -CH ₂ -CH ₂ -
30-55	Branched carbons
77	CDCl₃

APPENDIX 11(D) - EXAMPLE OF UV, IR AND NMR SPECTRA (SAMPLE X)

UV/Vis

FTIR

Instrument: Bruker Tensor 27 FTIR instrument with ATR accessory Number of scans: 16 Spectral resolution: 4 cm-1

Wavenumber (cm-1)	Vibration assignment
2958	SP2 CH stretch
2918	SP3 antisymm CH stretch
2851	SP3 symm CH stretch
1715	C=O stretch
1604	C=C stretch
1463	CH3 antisymm. Deformation/CH2 bend
1377	CH3 bending
1174	C-O stretch
675-800	CH out of plane bend

¹H NMR

Chemical shift (PPM relative to CDCI3)	Assignment
0.5-1.0	Methyl groups
1.0-1.4	Methylene groups
1.4-2.0	Methine groups
2.0-4.0	Groups adjucent to aromatic
6.7-8.0	Aromatic proton
7.27	Residual CHCl3

report no. 5/19

¹³C NMR

Chemical shift (PPM relative to CDCI ₃)	Assignment
10-21	Methyl group
14	CH ₃ -CH ₂ -CH ₂ -
22-23	CH ₃ -CH ₂ -CH ₂ -
26-29	Mid chain methylene groups
32	CH ₃ -CH ₂ -CH ₂ -
30-55	Branched carbons
77	CDCl₃
120-150	Aromatic carbons

APPENDIX 12 - EXAMPLE OF PCA REPORT (SAMPLE 075 - OLBO)

Page 1 of 2

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

	Report No. F	RT/CMS/12650		
Sample:				
Sample Number:	C)75		
Lab Sample No:	C	CMS-290886		
Test Method:				
MT/CMS/07				
Polycyclic Aroma	tics (PCA) by Dimethyl S	Sulfoxide Extraction - Refractive	Index Metho	d - IP 346 (modified).
The polycyclic ar	omatic (PCA) content ha	s been determined using IP346 sphaltene Free Petroleum Fra	0 "Determinati	on of Polycyclic Aroma
Refractive Index	Method". The modified	d method is technically equiv	alent to the	current version of IP
(IP346/92-2004) required for com	but omits the refractive pliance with EU labeling i	e index measurement of the Pe regulations for base oils (Dange	⊖A extract (0 erous Substar	ause 10.36) - no lor nces Directive 67/548/E
and amendments). The extract is also dri	ed through sodium sulphate co	ntained in a g	lass sinter rather than
mer paper.				
Г	ANALYSIS			
F			I RESULTS I	UNITS
	*Total PCA (% mass) by	/ IP346 (modified) MT/CMS/07	1.8	UNITS % mass
*Sample analysed	*Total PCA (% mass) by	/ IP346 (modified) MT/CMS/07	1.8	UNITS % mass
*Sample analysed	*Total PCA (% mass) by without determination of bo	/ IP346 (modified) MT/CMS/07	1.8	UNITS % mass
*Sample analysed Analysis has been	*Total PCA (% mass) by without determination of bo carried out on samples as	r IP346 (modified) MT/CMS/07 biling range. received, independent of sampling	rocedure, us	UNITS % mass
*Sample analysed Analysis has been of all test methods.	*Total PCA (% mass) by without determination of bo carried out on samples as	received, independent of sampling	ricedure, us	UNITS % mass
*Sample analysed Analysis has been of all test methods. Samples will be dis customer.	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months u	r IP346 (modified) MT/CMS/07 biling range. received, independent of sampling nless alternative arrangements hav	re been made	UNITS % mass ing the latest versions in agreement with the
*Sample analysed Analysis has been of all test methods. Samples will be dis customer.	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months un	v IP346 (modified) MT/CMS/07 piling range. received, independent of sampling nless alternative arrangements hav	ricedure, us	UNITS % mass ing the latest versions in agreement with the
*Sample analysed Analysis has been of all test methods. Samples will be dis customer.	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months u	r IP346 (modified) MT/CMS/07 biling range. received, independent of sampling nless alternative arrangements hav	re been made	UNITS % mass
*Sample analysed Analysis has been of all test methods. Samples will be dis customer.	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months un	received, independent of sampling nange.	procedure, us ve been made	UNITS % mass ing the latest versions in agreement with the
*Sample analysed Analysis has been of all test methods. Samples will be dis customer.	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months un carried out on samples as	r IP346 (modified) MT/CMS/07 piling range. received, independent of sampling nless alternative arrangements hav Checked By:	re been made	UNITS % mass ing the latest versions in agreement with the
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy	*Total PCA (% mass) by without determination of bc carried out on samples as sposed of after 2 months un ?. factory rey rey	/ IP346 (modified) MT/CMS/07 biling range. received, independent of sampling nless alternative arrangements hav Checked By:	recedure, us re been made A. Cart A Carter Technical Spe	UNITS % mass ing the latest versions in agreement with the
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(6	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as	r IP346 (modified) MT/CMS/07 biling range. received, independent of sampling nless alternative arrangements hav Checked By:	A Carter Technical Spe	UNITS % mass ing the latest versions in agreement with the tas
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	*Total PCA (% mass) by without determination of bc carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as	/ IP346 (modified) MT/CMS/07 biling range. received, independent of sampling nless alternative arrangements hav Checked By:	A Carter Technical Spe	UNITS % mass ing the latest versions in agreement with the ter cialist
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as	r IP346 (modified) MT/CMS/07 piling range. received, independent of sampling nless alternative arrangements hav Checked By:	A. Car A Carter Technical Spe	UNITS % mass ing the latest versions in agreement with the tas
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	*Total PCA (% mass) by without determination of bc carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as	r IP346 (modified) MT/CMS/07 piling range. received, independent of sampling nless alternative arrangements hav Checked By:	A Carter Technical Spe	UNITS % mass ing the latest versions in agreement with the ter cialist
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	*Total PCA (% mass) by without determination of bo carried out on samples as sposed of after 2 months un ?. farrery rey st	r IP346 (modified) MT/CMS/07 piling range. received, independent of sampling nless alternative arrangements hav Checked By:	A. Car	UNITS % mass ing the latest versions in agreement with the cas
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	Total PCA (% mass) by without determination of bc carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as	r IP346 (modified) MT/CMS/07 piling range. received, independent of sampling nless alternative arrangements hav Checked By:	A. Car	UNITS % mass ing the latest versions in agreement with the tas
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	Total PCA (% mass) by without determination of bc carried out on samples as sposed of after 2 months under the second state of a second	/ IP346 (modified) MT/CMS/07 biling range. received, independent of sampling nless alternative arrangements hav Checked By:	A. Car	UNITS % mass ing the latest versions in agreement with the tes cialist
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	Total PCA (% mass) by without determination of bc carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as sposed of after 2 months un carried out on samples as	Page 2 of 2	A. Car	UNITS % mass ing the latest versions in agreement with the tor cialist Registered in England No. 1408264 Registered Office
*Sample analysed Analysis has been of all test methods. Samples will be dis customer. Reported By: P Fai Analy Contact No.: +44(0	All services or work performed by and conditions set at http://www.	Page 2 of 2 Plage 2 of 2 VITS Testing Services (UK) Ltd are pursua	A. Carter Technical Spe	UNITS % mass ing the latest versions in agreement with the tes cialist Registered in England No. 1408264 Registered Office Academy Place 1-9 Brook Street

APPENDIX 13 - EXAMPLE OF HPLC REPORT (SAMPLE 003 - CGO)

RT/CMS/12551

Disclaimer

This report was made with due care within the limitation of a defined scope of work and on the basis of information, materials received from the Customer or its nominated third parties or collected by Intertek in accordance with the Customer's instructions. Intertek is under no obligation to refer to or report upon any facts or circumstances which are outside the specific instructions received and accepts no responsibility to any parties whatsoever, following the issue of the report, for any matters arising outside the agreed scope of the works. The tests results are not intended to be a recommendation for any particular course of action. Customer is responsible for acting as it sees fit on the basis of such results. The reported result(s) relate specifically to the sample(s) that were drawn and delivered by the Customer or their nominated third party. The reported result(s) provide no warranty or verification on the sample(s) representing any specific goods, material and/or shipment and only relate to the sample(s) as received and tested. Intertek will not be responsible for any damages caused to the samples during their transit to Intertek's facilities and Customer acknowledges that the conditions surrounding the samples during the transit may impact the results. This report does not discharge or release the factory/sellers/suppliers from their commercial, legal or contractual obligations with buyers or end-users in respect of products provided by the factory/sellers/suppliers. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested materials or product must first be approved in writing by Intertek

Page 2 of 4

All services or work performed by ITS Testing Services (UK) Ltd are pursuant to the terms and conditions set at http://www.intertek.com/WorkArea/DownloadAsset.aspx?id=14263. This Test report shall not be reproduced except in full, without written approval of the laboratory.

report no. 5/19

RESULTS 22.7 4.1 1.4 5.5 28.2	UNITS % mass % mass % mass % mass % mass
RESULTS 22.7 4.1 1.4 5.5 28.2	UNITS % mass % mass % mass % mass % mass
RESULTS 22.7 4.1 1.4 5.5 28.2	UNITS % mass % mass % mass % mass % mass
RESULTS 22.7 4.1 1.4 5.5 28.2	UNITS % mass % mass % mass % mass % mass
RESULTS 22.7 4.1 1.4 5.5 28.2	UNITS % mass % mass % mass % mass % mass
22.7 4.1 1.4 5.5 28.2	% mass % mass % mass % mass % mass
4.1 1.4 5.5 28.2	% mass % mass % mass % mass
5.5 28.2	% mass % mass
28.2	% mass
ndependent of sampling procedu	re, using the latest versions of
ative arrangements have been ma	ade in agreement with the
~	0.00-
Checked By:	Elkers
Carol Elk	lins
Deputy L	aboratory manager
	Desistand in Sector
e 3 of 4	Registered in England No. 1408264
e 3 of 4	Registered in England No. 1408254 Registered Office
e 3 of 4 Services (UK) Ltd are pursuant to the ten WorkArea/DownloadAsset.aspx?id=1426	Registered in England No. 1408254 Registered Office ms Academy Place 3. 1-9 Brook Street
e 3 of 4 Services (UK) Ltd are pursuant to the ten WorkArea/DownloadAsset.aspx?id=1426 pt in full, without written approval of the	Registered in England No. 1408254 Registered Office Academy Place 3. 1-9 Brook Street Brentwood Essey OM14 END
	ndependent of sampling procedu ative arrangements have been m Checked By: Carol Elk Deputy L

APPENDIX 14 - EXAMPLE OF TLC-FID REPORT (SAMPLE 007 - HFO)

Page 1) Experimental procedures and results
Appendix A. The TLC-FID trace
Experimental procedures:
Experimental procedures: According to IP 469-1 (2006):
Pre-treatment steps: According to the Method.
Chromatographic separation systems: Chromarods S5 is used due to the fact that the, in method mentiond, refered chromarods is discontinued.
Development conditions:
Time in solvent A = 20 min
Time in solvent B = 10 min
Time in solvent C = 3 min
Temperature = 24°C
Humidity = 15%
FID instrumentation: latroscan MK – 6S
Operating conditions: Hydrogen = 160 ml/minute, Air = 2000 ml/min
System check standard: Internal reference SM-id = 410088
Processing software: SES Analysessystem I – ChromStar 32 V6.3, SR1
Results for: No 7
Date of analysis: 2016-12-28
Measured concentrations (All values are reported to the nearest 0.1 %)
Saturates = 11,6
Aromatics = 49,0
Resins/Polars (I) = 26,8
Asphaltenes/Polars (II) = 12,6
Comments : N/A

APPENDIX 15 - EXAMPLE OF VISCOSITY REPORT (SAMPLE 182 - VHGO)

363	_		Date: 03-Nor	<i>v-</i> 2015		UKAS TESTING 0131
Analytical Report	No: EP15-	20286.031	SF ANALYTICON LIMITED 374 CHESTER ROAD HARTFORD CHESHIRE CW8 2AQ TEL 07500 848 727 EMAIL STUART@SFANALYTICON.COM			Client's direction. Ti
indings constitute no warranty of the which the sample(s) is/are said to be ests marked with an asterisk (*) are	e sample's representati extracted, outside the scope of th	is laboratory's ISO/ IEC 17025	ly relate to the sample(s). The Comp accreditation.	pany accepts no liabil	lity with regard to the	origin or source fro
CLIENT ID :	CAS Number : 6	68476-31-3			E 101 1	
SAMPLE SOURCE : SAMPLE TYPE : SAMPLED :	As Supplied EC number : 27 –	0-673-5	SOURCE ID : SAMPLE BY : RECEIVED :	Sample N Client 15-Oct-20	Fuel Oil, no.4 Number : 182	
ANALYSED :	22-Oct-2015 - 2	8-Oct-2015	COMPLETED :	Z8-OCI-20	MIN	MAY
Kinematic Viscosity at 37 8°	C (100°F)	ASTM D445	8 48	6 cSt		-
Savbolt Universal Viscosity	at 100°F *	ASTM D2161	53.	7 SUS	-	-
This document is only valid in	its entirely and you	ur attention is drawn to the	e Terms and Conditions on Pa	age 1 of this repor	ň	
This document is only valid in AUTHORISED SIGNATORY	its entirely and you	ur attention is drawn to the	e Terms and Conditions on Pa	age 1 of this repor	rt	

Concawe Boulevard du Souverain 165 B-1160 Brussels Belgium

Tel: +32-2-566 91 60 Fax: +32-2-566 91 81 e-mail: info@concawe.org http://www.concawe.eu

