Publication
29 Apr 2024

Assessing the robustness of Ozone Chemical Regimes to chemistry-transport model configurations

In a previous study, we assessed the efficiency of reducing either traffic or industrial emissions on various ozone metrics for several cities in Europe, based on the Air Control Toolbox surrogate model. Here, we perform various model parametrisation sensitivity analyses in order to assess the robustness of our results. We find that increasing the model resolution has a limited impact on the ozone response to emission changes when focusing on concentration peaks but strongly changes the response of the ozone daily mean with a switch to a titration regime for all zones with significant nitrogen oxide (NOx) emissions.

The impact of pollution imported from outside the simulation domain was also studied and we show that if the first lever for action on ozone peaks remains as the reduction of local and regional emissions, in order to achieve higher levels of reduction, it is necessary to act at a European level. We also explore more up-to-date temporal profiles and sectoral emission speciation and find a shift towards a more NOx-limited regime in a number of cities. Overall, these sensitivity tests show that most of the differences are simulated in cities with high NOx emissions and little solar radiation but do not change the overall conclusions that were previously obtained.

For more information, please contact us