

Finding the right solutions: Concawe's NO_x / NO_2 Source Apportionment Tool

Bino Maiheu, VITO

3/04/2019 ©VITO – Not for distribution

OUTLINE

- Air quality at multiple scales
- Importance of local source apportionment
- Introducing the Concawe EU-wide NO₂/NO_x source apportionment tool
- Analyses and discussion
- Conclusions and outlook

- Air quality is a multi-scale phenomenon
- Strong spatial variability depending on location type

3/04/2019 ©VITO – Not for distribution

SPATIAL VARIABILITY IN THE CITY

3/04/2019

ROAD SIDE GRADIENTS

- ATMOSYS Highway campaign E40
- April 2012 until February 2013

IMPLICATIONS OF SPATIAL SCALE

Appropriate methods to resolve spatial scale !

3/04/2019

LOCAL SOURCE CONTRIBUTIONS

- Harbour of Ghent
- Local NO_x SA using bottom up emission data

CONCAWE NO₂/NO_x SOURCE APPORTIONMENT TOOL

- Aim : EU wide source contribution tool for NO₂/NO_x
- Taking background sectors into account
- With detailed split of traffic sector : vehicle types, fuel types, EURO norms
- Sufficiently high resolution
 - Trade-off : canyons, limited to major roads
 - DG-ENV service contract (070201/2015/SER/717473/C.3) Improved methods for NO₂ exposure : <u>http://ec.europa.eu/environment/air/publications/models.htm</u>
 - http://maps.atmosys.eu/eu-no2/
 - Kernel dispersion method
- Methodological + ICT challenges

3/04/2019

CONCAWE NO₂/NO_x SOURCE APPORTIONMENT TOOL

- Aim : EU
- Taking ba(
 Zaking ba(
- With deta
- Sufficient
 - Trade-off
 - DG-ENV exposure
 - <u>http://m</u>
 - Kernel di

3/04/2019 ©VITO – Not for distribution

- Types : Passenger Cars, Bus, Heavy Duty, Light Duty & 2-wheelers
- Fuel types : CNG, Diesel, Petrol

BRIEF METHODOLOGY

EURO norms : Pre 4, EURO 4, 5, 6

Background NO, source allocation

- Starting from CAMS NO₂/NO₂ annual averaged map for 2015
- Using SHERPA screening tool (JRC) : <u>http://aqm.jrc.ec.europa.eu/sherpa.aspx</u>
- "Local" contribution : emitted within SHERPA 7x7 km cell

Emission preprocessing and mapping

- Fleet composition : COPERT-V (2014)
- FASTRACE traffic emission model
- Mapping traffic intensities : total vkm redistribution OpenStreetMap & Pop. map (JRC GHSL)

High resolution dispersion modelling

Using kernel dispersion method developed in DG-ENV service contract

OpenStreetMap

TOOL OVERVIEW : NO_x CONTRIBUTIONS

TOOL OVERVIEW : NO_X CONTRIBUTIONS

Dynamic grouping of vehicle types, fuel types and EURO norms

3/04/2019

TOOL OVERVIEW : IN-SITU NO₂ ANALYSIS

3/04/2019

SPATIAL DISTRIBUTION OF POPULATION EXPOSURE CONTRIBUTIONS

3/04/2019 ©VITO – Not for distribution Population map : http://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_pop_eurostat_europe_r2016a

VALIDATION

Using EEA annual mean NO₂ (e-Reporting)

3/04/2019

EXAMPLE VALIDATIONS

3/04/2019

TOOL USABILITY

- Investigate the contribution of certain vehicle or fuel types (such as diesel cars) to the NO_x and NO₂ concentrations at a resolution of 125 x 125 m
- This both for local (within the 7x7 km SHERPA grid cell) and for the total concentrations, taking into account a regional contribution as well
- Get a feeling for the distribution of the concentration w.r.t. the distribution of population due to the high resolution approach
- Get a feeling for **concentration gradients** near roads though resolution still limited
- Get a feeling for the fleet composition and the share of e.g. diesel cars
- Offline analyses (no aggregation functionality in the tool yet)

Madrid

OFFLINE ANALYSES: CONTRIBUTION OF DIFFERENT EURO NORMS ON NO₂ CONCENTRATIONS

△ EURO4 (2014 fleet)

Selected country: Spain

(%)

n

-10

-20

-30

-40

-50

-60

The dynamic bar chart below shows the contribution of the total mileage at national level for the different road traffic categories considered. The country is updated depending on where you click in the map

△ Pre EURO4 (2014 fleet)

Selected country: France

The dynamic bar chart below shows the contribution of the total mileage at national level for the different road traffic categories considered. The country is updated depending on where you click in the map.

EXPOSURE ANALYSIS USING EU-WIDE APPROACH

- NO₂ exposure analysis for selected cities
- Calibration required using observations for indicated cities

City	Total population in selected area	Popula EU AQ LV (ntion > 40 μg/m³)	Pop. weighted mean NO ₂ [µg/m³]
Antwerp*	1,000,619	38,812	3.9%	30.11
Brussels	2,430,236	4,371	0.2%	23.35
Paris	11,609,243	4,795,574	41.3%	36.83
Berlin	4,821,544	323,379	6.7%	25.96
Munich	2,637,660	108,752	4.1%	26.69
Milan	4,762,667	3,596,664	75.5%	44.95
Madrid	6,425,663	2,686,404	41.8%	35.84

Significant differences Caution : EU-wide approach

* Only one traffic station

Calibrated using traffic stations / uncalibrated

3/04/2019

DISCUSSION & OUTLOOK

- Strong variability of urban air quality
- Importance of local source apportionment for making right decisions
- EU-wide tool to better understand contributions to local traffic-related air pollution
- Clearly doesn't replace local assessment
- Continue improving
 - Update using most recent COPERT data (Feb. 2019 release)
 - Better account for recent changes in fleet composition
 - Improve traffic disaggregation & coupling with background
 - Calibration using NO₂ observations

3/04/2019